

The Sentinel System: The Case for Reusable Tools and Analysis Ready Data in Distributed Data Networks

Richard Platt MD, MS Harvard Pilgrim Health Care Institute and Harvard Medical School for the Sentinel Investigators August 29, 2017

Disclosures

None related to this presentation

Sentinel's charge

Assess the use, safety, and effectiveness of regulated medical products by using electronic healthcare data plus other resources

Create data, informatics, and methodologic capabilities to support these activities

Speedily!

Sentinel partner organizations

Lead – HPHC Institute

Harvard Pilgrim Health Care Institute

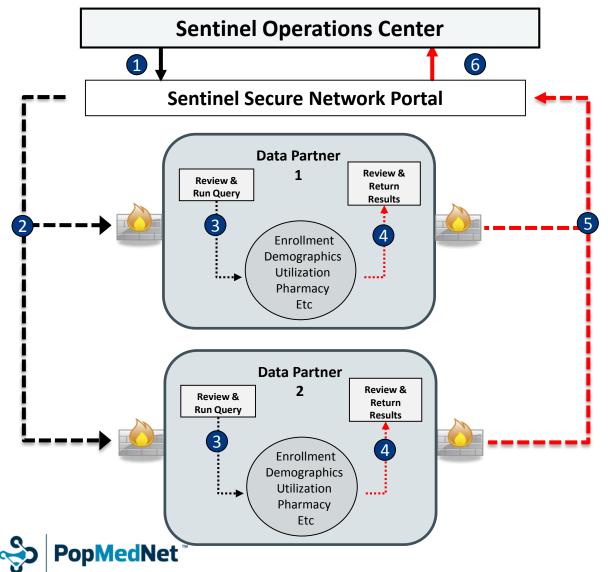
DEPARTMENT OF POPULATION MEDICINE

An Ideal Distributed Network Should...

- Accommodate many data holders' data
- Incorporate new kinds of data as they become available
- Maximize local control of data and uses
- Minimize data exchange
- Include local experts in study design and interpretation
- Allow a study protocol to be implemented identically and efficiently across the network
- Support standardized, reusable components

An Ideal Distributed Network Should...

- Accommodate many data holders' data
- Incorporate new kinds of data as they become available
- Maximize local control of data and uses
- Minimize data exchange
- Include local experts in study design and interpretation
- Allow a study protocol to be implemented identically and efficiently across the network
- Support standardized, reusable components


Sentinel distributed database*

Population with well-defined person-time for which most medically-attended events are known

- 425 million person-years of observation time
- 43 million people currently accruing new data
- 5.9 billion dispensings
- 7.2 billion unique encounters
- 42 million people with >1 laboratory test result

Sentinel distributed analysis

1- User creates and submits query

2- Data Partners retrieve query

3- Data Partners review and run query against their local data

4- Data Partners review results

5- Data Partners return results via secure network

6 Results are aggregated and returned

Custom Programs

•Analysis as specified

- Custom inputs,
- custom output
- Longer execution

10 Selected protocol based assessments

CDER

- Dabigatran and several outcomes
- Metabolic effects of 2nd generation antipsychotics in youth
- Diabetes drugs and acute myocardial infarction
- IV Iron and anaphylaxis
- CBER
 - IV Immune Globulin and thromboembolic events
 - Gardasil and venous thromboembolism
 - Influenza vaccines and pregnancy outcomes
 - Gardasil 9 and Pregnancy Outcomes
 - Prevnar 13 and Kawasaki disease
 - Blood components and Transfusion-Related Lung Injury (TRALI)

Custom Programs

Routine Analytic Framework (RAF)

Analysis as specified
Custom inputs, custom output
Longer execution

- Off-the-shelf query "templates"
- Standard inputs,
- standard output
- Quick execution

Custom Programs

Routine AnalyticRADaR: Rapid AnalyticFramework (RAF)Development and Response:RAF + custom code

Analysis as specified
Custom inputs, custom output
Longer execution

- Off-the-shelf query "templates"
- Standard inputs,standard outputQuick execution

- Hybrid approach: custom code leveraging RAF
- •Standard inputs,
- custom output

Rapid Analyses

Custom Programs

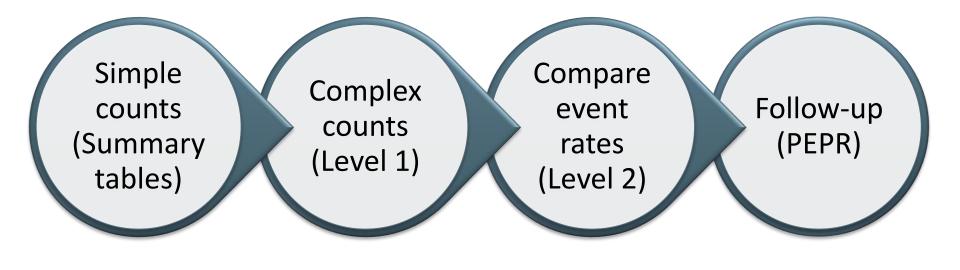
Analysis as specified
Custom inputs, custom output
Longer execution Routine AnalyticRADaR: Rapid AnalyticFramework (RAF)Development and Response:

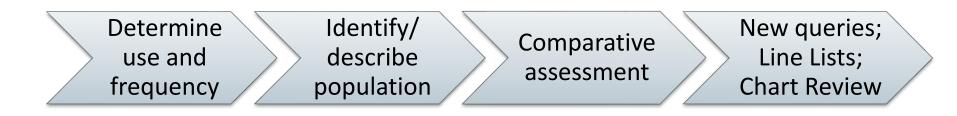
- Off-the-shelf query "templates"
- Standard inputs,
 standard output
 Quick execution

Hybrid approach:
custom code leveraging
RAF
Standard inputs,

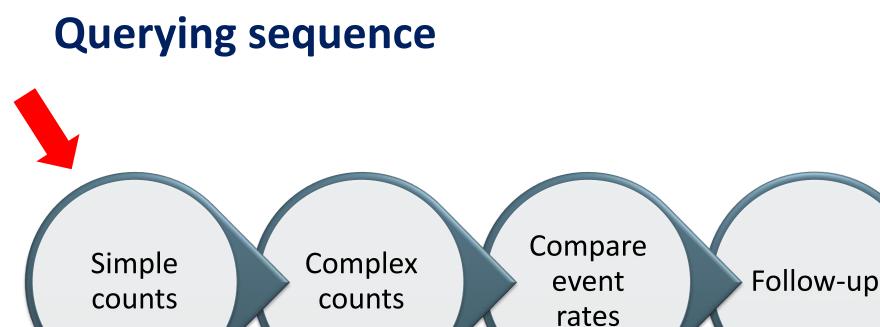
RAF + custom code

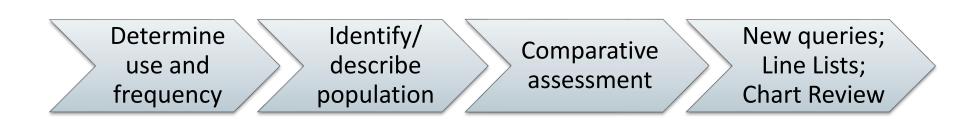
custom output




Routine Analytic Framework tools

- Validated, flexible, and reusable analytic programs
 - Meet FDA's needs for responsiveness, data quality, reproducibility, and transparency
 - Run efficiently against the Sentinel Common
 Data Model and generate standardized output
 - Meets needs of Data Partners with diverse technical, data governance, security, and confidentiality requirements




Rapid analysis querying sequence

Simple counts (summary table queries)

Counts of (new) users with exposure or condition

Simple counts (summary table queries)

- Counts of (new) users with exposure or condition
- Example: Dispensing of evolocumab (PCSK9 inhibitor) without prior dispensing during preceding 180 days, by age, sex, and year

Age	20	015	2016 (partial)			
	Male	Female	Male	Female		
<44	5	2	61	28		
45-64	85	61	569	335		
65-74	42	35	231	222		
75+	11	20	101	149		
TOTAL	2	61	1,6	596		

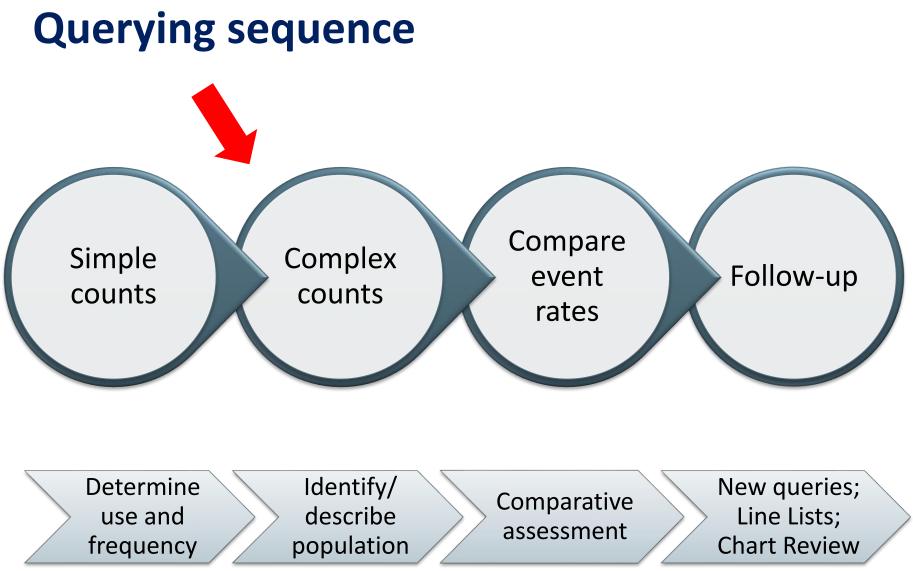
www.sentinelinitiative.org/sites/default/files/Drugs/Assessments/Sentinel_Brief_Report_2015_NME_Report1.xlsx

Simple counts (summary table queries)

- Counts of (new) users with exposure or condition
- Example: Dispensing of evolocumab (PCSK9 inhibitor) without prior dispensing during preceding 180 days, by age, sex, and year

Age	20	015	2016 (partial)			
	Male	Female	Male	Female		
<44	5	2	61	28		
45-64	85	61	569	335		
65-74	42	35	231	222		
75+	11	20	101	149		
TOTAL	2	61	1,6	596		

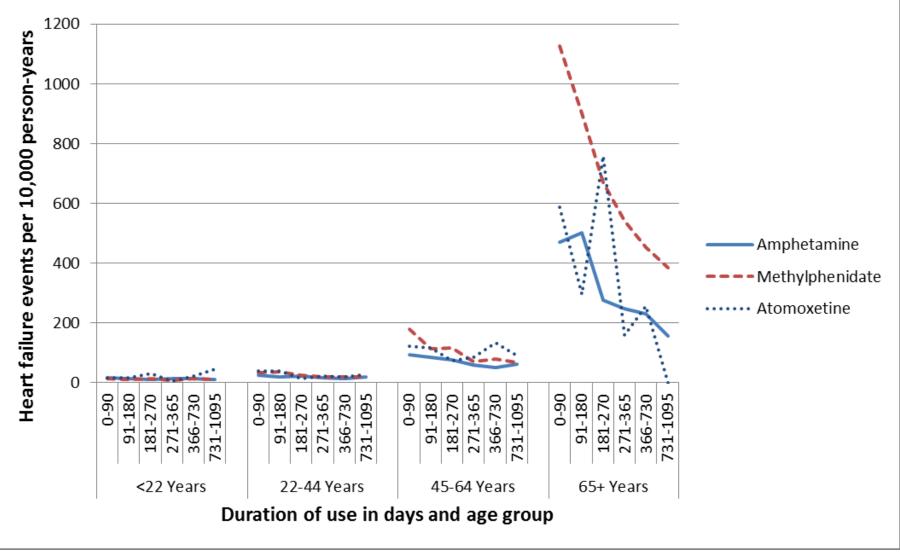
49 such queries / 291 scenarios in 2016


www.sentinelinitiative.org/sites/default/files/Drugs/Assessments/Sentinel_Brief_Report_2015_NME_Report1.xlsx

Summary tables at 33rd ICPE

- Early Post-Approval Surveillance of New Molecular Entity Uptake in the Sentinel Distributed Database
 - Today: Poster session B

Complex count queries (Level 1 / 1+)


- Counts and rates of events within user specified periods, among populations identified using complex "and/or/not" relationships.
- No assessment of causality

Complex count queries (Level 1 / 1+)

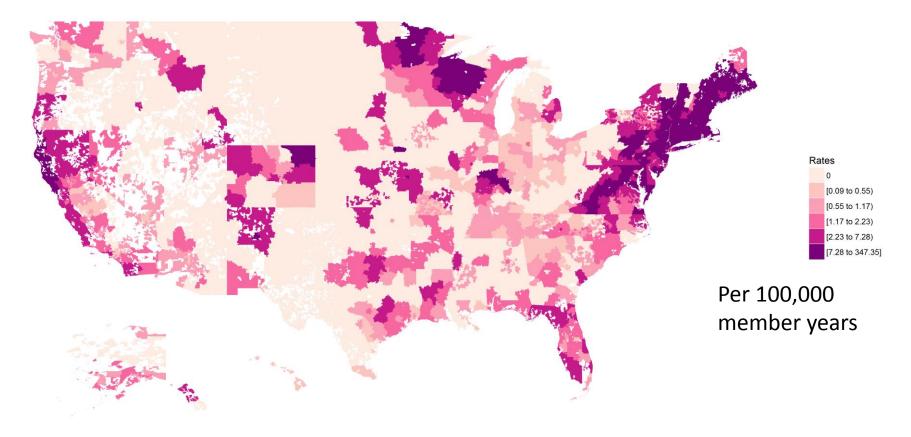
- Counts and rates of events within user specified periods, among populations identified using complex "and/or/not" relationships.
 - Example: Rates of first diagnosis of heart failure or cardiomyopathy among new users of different drugs used to treat ADHD, by age and duration of exposure

Figure 1. Rate of heart failure events (per 10,000 person years) by age group, medication, and duration of use

Mosholder. Sentinel Public Workshop Feb 2017

Complex count queries (Level 1 / 1+)

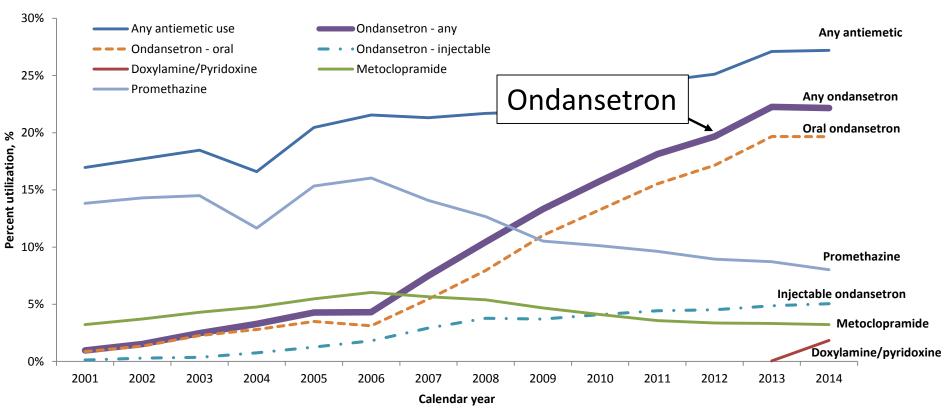
- Counts and rates of events within user specified periods, among populations identified using complex "and/or/not" relationships.
 - Example: Rates of first diagnosis of heart failure or cardiomyopathy among new users of different drugs used to treat ADHD, by age and duration of exposure
- 53 queries, 800+ scenarios in 2016



Complex count queries (Level 1 / 1+)

- Counts and rates of events within user specified times, among populations identified using complex "and/or/not" relationships.
 - Example: Rates of first diagnosis of heart failure or cardiomyopathy among new users of different drugs used to treat ADHD, by age and duration of exposure
- 53 queries, 800+ scenarios in 2016
- New uses
 - Medications errors (name confusion, dosing errors)
 - Geographic location stratification

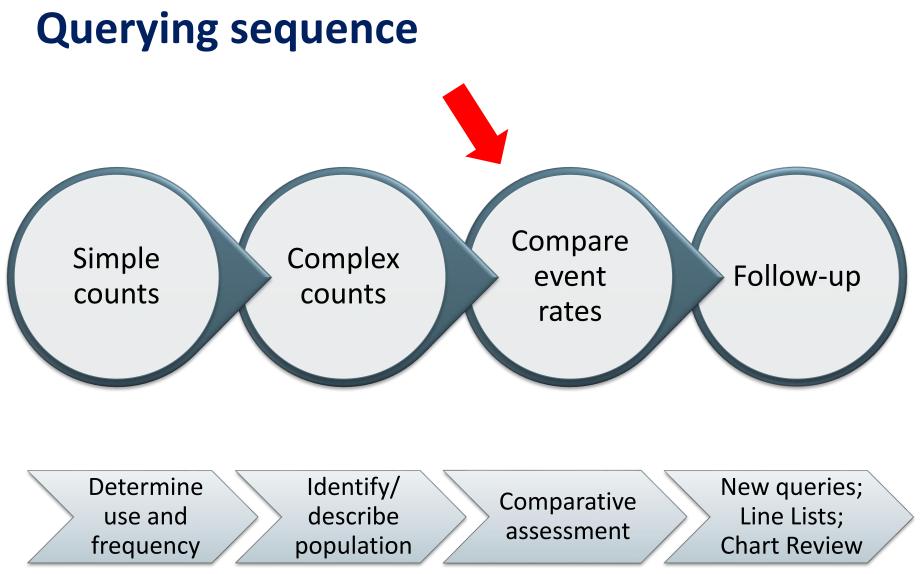
Babesiosis Rates 1/1/2008 to 10/30/2015 3-digit ZIP code, Location Certain Babesiosis Rates


8 Sentinel Complex Counts (L1) at 33rd ICPE

- Opportunities for Rapid Monitoring of New Cancer Treatments – Tyrosine Kinase Inhibitors
- Impact of ICD-10-CM on Selected CV-Related Events
- Identification of Name Confusion Medication Errors
- RCT Using FDA's Sentinel Infrastructure
- Dispensings of Influenza Antiviral Medications as a Source of Data for Influenza Surveillance
- Types 1 & 2 Diabetes Mellitus ICD-9-CM Codes
 Among New Users of Drugs Labeled for Type 2
- Use of TNF-alpha Inhibitors During Pregnancy
- Trends of Tdap Vaccination during Pregnancy

www.fda.gov

Use of antiemetic drugs among live birth pregnancies in the Sentinel Distributed Database, 2001-2014^{a,b}



^a Dashed lines for oral and injection ondansetron form represent a portion of all total ondansetron use as shown by the solid purple line. Summation of oral and injection utilization sums to greater than total ondansetron use since some women received both products.

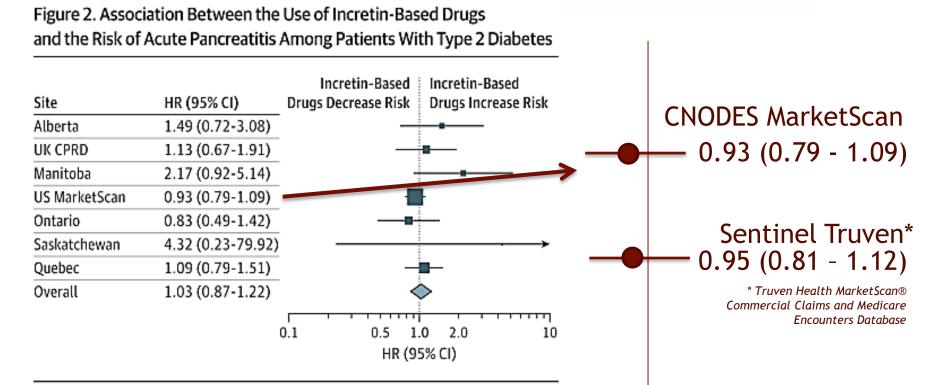
^b Not all Mini-Sentinel data partners contributed data for the entire study period

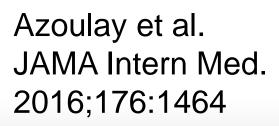
Taylor. Pharmacoepidemiology and Drug Safety 2017;26:592

Comparison of rates (Level 2 / 2+)

- Propensity score matched relative rates or hazard ratios comparing outcomes among two cohorts identified by complex count program <u>Or</u>
- Adjusted self-controlled risk interval analysis

4 Sentinel Comparisons (L2) at 33rd ICPE


- Propensity score matched
 - Venous thromboembolism after cyclic vs non-cyclic combined oral contraceptives
 - Stroke after antipsychotic use in the nonelderly
- Self-controlled risk interval
 - Seizure after gadolinium-enhanced imaging
 - Seizure after ranolazine


Comparison of rates (Level 2 / 2+)

- Propensity score matched relative rates or hazard ratios comparing outcomes among two cohorts identified by complex count program
 <u>Or</u>
- Adjusted self-controlled risk interval analysis
- 11 queries / 100+ scenarios in 2016

Incretins and Pancreatitis - Results

The reference category was current use of 2 or more oral antidiabetic drugs. The size of the boxes is proportional to the weight of a given participating site in the random-effects meta-analysis. The I^2 (percentage of the total variance due to between-study heterogeneity) was 13.6% (P = .33 for heterogeneity). CPRD indicates Clinical Practice Research Datalink; HR, hazard ratio.

Distributed Regression Analysis in a Distributed Health Data Network

Jessica M. Malenfant, MPH; Qoua L. Her, PharmD, MSPharm, MSc; Sarah Malek, MPA; Yury Vilk, PhD; Sengwee Toh, ScD

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA

33rd INTERNATIONAL CONFERENCE ON PHARMACOEPIDEMIOLOGY & THERAPEUTIC RISK MANAGEMENT, Palais de Congres de Montreal, Montreal, Canada, August 26-30, 2017

ABSTRACT

Background: Distributed health data networks use distributed databases for efficient, privacy-protecting, and effective public health research and surveillance activities. Distributed regression analysis (DRA) is a novel analytic method that does not require transferring of patient-level data in multi-database studies but produces results statistically equivalent to those from pooled patient-level data analysis. The execution of DRA has been largely manual and labor-intensive. We describe a new approach to conduct automated DRA in the FDA's Sentinel system, a distributed network using multiple electronic health data sources for medical product safety monitoring.

Objective: Implement a method within the existing PopMedNet[™] (PMN) open-source platform used in Sentinel to allow automated, iterative, privacy-protecting, and scientifically accurate DRA in a real-world setting.

Methods: The project had 2 work streams: (1) develop DRA analytic code in SAS for multivariable-adjusted regression models and (2) enhance PMN to process DRA automated communication cycles within the distributed data network. We developed a new capability in PMN to enable the analysis center to (1) automatically aggregate site-specific intermediate statistics to compute or update the parameter estimates, which are returned to the data partners for subsequent iterations, and (2) to allow this iterative process to continuously refine the statistics until the model converges. The main outcome of interest was confirmation of analytic code accuracy and execution of DRA in a real-world setting. The DRA analytic code was validated against test data using results from pooled patient-level data analysis as a benchmark. PMN automation was tested internally and with external data partners.

Results: PMN software development was an iterative process where the implementation ensured that the functionality developed within the PMN code base would not impact existing Sentinel workflows or system functions. We developed and validated PMN's ability to perform regression analysis using only summary-level intermediate statistics and produce statistically equivalent regression parameters as pooled individual-level data analysis.

Conclusion: This work can be leveraged in the future for DRA in Sentinel and other networks. The functionality is agnostic to statistical software and can be extended to R and other software. Funding: Sentinel Coordinating Center is funded by the FDA through the Department of Health and Human Services (HHS) Contract number HHSF223201400030I.

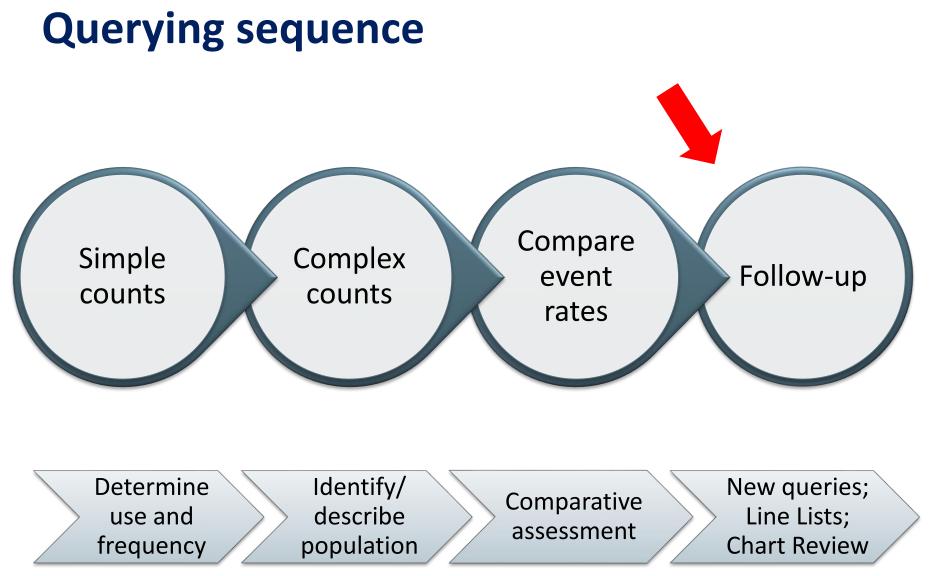
OBJECTIVE

- Implement a system to conduct distributed regression analysis (DRA) within the existing PopMedNet[™] (PMN) open-source platform
- DRA key development features:
 - Automated
 - Iterative
 - Privacy-protecting
 - Scientifically accurate
 - Demonstrated use in a real-world setting

BACKGROUND

- Distributed databases enable efficient, privacy-protecting, and effective public health research and surveillance activities
- DRA is a novel analytic method that does not require transferring of patient-level data
- DRA produces results statistically equivalent to pooled patient-level data analysis
- To date, DRA has been largely manual and labor-intensive

METHODS


The project had two work streams:

- Work stream 1: Develop DRA analytic code in SAS for multivariable-adjusted regression analysis
- Work stream 2: Enhance PMN to process DRA automated communication cycles within the distributed network

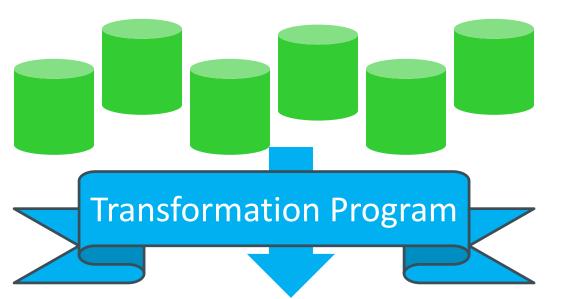
Extend PMN to enable the Analysis Center to:

- Automatically aggregate site-specific intermediate statistics to compute regression parameter estimates, which are returned to the data partners for subsequent iterations
- Allow this iterative process to continuously refine the regression statistics until the model converges

Patient Episode Profile Retrieval (PEPR)

	Episode Detail			 ^ Incidence: F = first observed; I = incident; blank = prevalent # Primary Dx: P = primary; S = secondary; X = N/A ~ Med enroll segment containing the admission date of the encounter <u>or</u> the drug enroll segment containing the dispensing date 											
	Days from expos	Enc type	L O S	C Cat	linical Type	code Code	Code description	Incidence^	P Dx#	Node (Y/N)	Main expos (Y/N)	Any vacc (Y/N)	Rx days supp	 Cov start~	Cov end~
Г		AV		DX	09	V0382	Need Proph Vacc Agnst Strep Pne					1		-386	1260
	0	AV		DX	09	V068	Need Proph Vacc Against Oth Comb Dz	F				1		-386	1260
Day 0, office visit	0	AV		DX	09	V202	Routine Infant/Child Health Check							-386	1260
Routine health check—	0	AV		PX	C4	90471	Immunization Admin	F				1		-386	1260
Immunization	0	AV		PX	C4	90472	Immunization Admin Each Add	F				1		-386	1260
		AV		PX	C4	90669	PCV7 Vaccine Im					1		-386	
	-	AV		PX	C4	90710	MMRV Vaccine Sc	F			1	1		-386	
Day 4, office visit		AV AV		PX DX	C4 09	99392 0090	Prev Visit Est Age 1-4 Inf Colitis Enterit & Gastroenterit	F						-386 -386	1260 1260
Gastroenteritis	4	AV		PX	C4	99213	Office/Outpatient Visit Est	F						-386	1260
		IP		DX	09	27651	Dehydration	1	Ρ					-386	1260
Day 7, hospitalized	7	IP	1	DX	09	53550	Uns Gastrit & Gastroduodit No Hemorr	1	x					-386	1260
Vomiting / cough	7	IP	1	DX	09	7862	Cough	I	х					-386	1260
Dehydration		IP		DX	09	78703	Vomiting Alone	1	S	1				-386	1260
Gastroenteritis		IP	1	PX	C4	71020	Chest X-Ray 2Vw Frontal & Latl	F						-386	1260
	7	IP	1	PX	C4	74000	X-Ray Exam Of Abdomen	F						-386	1260

www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_PRISM_Data-Mining-Infrastructure_Report_0.pdf



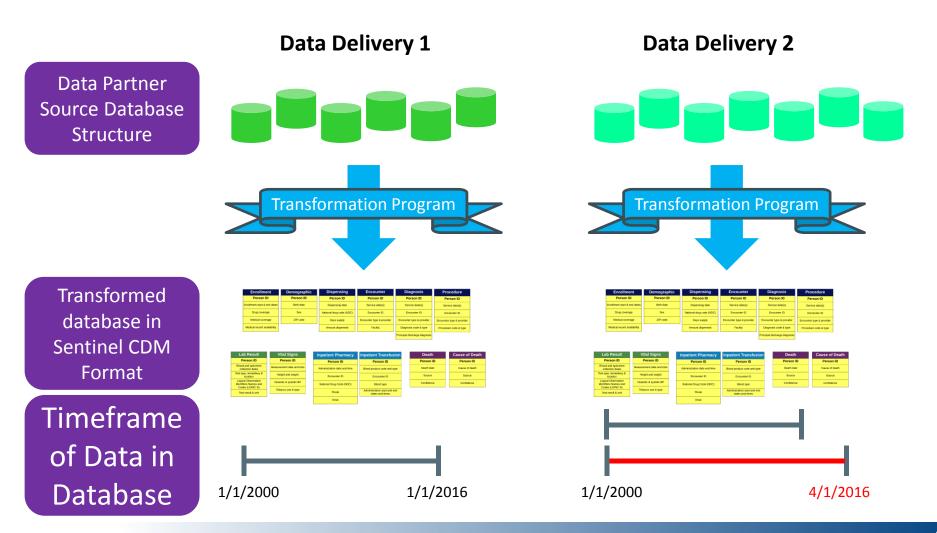
Rapid Response Requires Robust Data Quality Assurance – In Advance of Its Use

Every Data Partner transforms its data into the Sentinel Common Data Model

Data Partners' Source Database Structure

Transformed Database in Sentinel CDM Format

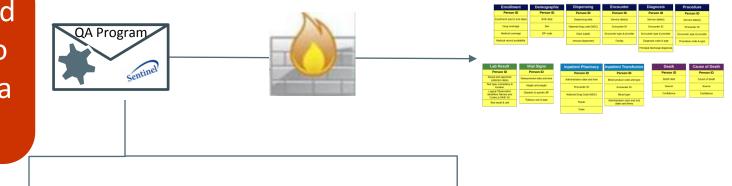
Enrollment	Demographic	Dispensing	Encounter	Diagnosis	Procedure		
Person ID	Person ID	Person ID	Person ID	Person ID	Person ID		
Enroliment start & end dates	Birth date	Dispensing date	Service date(s)	Service date(s)	Service date(s)		
Drug coverage	Sex	National drug code (NDC)	Encounter ID	Encounter ID	Encounter ID		
Medical coverage	ZIP code	Days supply	Encounter type & provider	Encounter type & provider	Encounter type & provider		
Medical record availability		Amount dispensed	Facility	Diagnosis code & type	Procedure code & type		
				Principal discharge diagnosis			


Vital Signs	Lab Result
Person ID	Person ID
Measurement date and time	Result and specimen collection dates
Height and weight	Test type, immediacy & location
Diastolic & systolic BP	Logical Observation Identifiers Names and
Tobacco use & type	Codes (LOINC ®) Test result & unit
	Person ID Measurement date and time Height and weight Diastolic & systolic BP

Inpatient Pharmacy	Inpatient Transfusion			
Person ID	Person ID			
Administration date and time	Blood product code and type			
Encounter ID	Encounter ID			
National Drug Code (NDC)	Blood type			
Route	Administration start and end dates and times			
Dose				

Death	Cause of Death
Person ID	Person ID
Death date	Cause of death
Source	Source
Confidence	Confidence

The database is dynamic – updates overwrite the preceding data!



Data Partner

The quality assurance process

Send a standard QA program to check DP's data in waiting

Compliance Checks

Level 1: Completeness,validity, accuracyLevel 2: Cross-variable andcross-table integrity

Judgment Call Checks

Level 3: Trends: consistency Level 4: Logical: plausibility, convergence

Sentinel Quality Assurance Statistics

- The QA team (six people) reviews ~50 data updates per year from 17 Data Partners
- Since 1/1/2016, the dataset has needed to be re-refreshed and QA package re-run 16 times to fix an issue
- In the <u>latest data deliveries from the 5 largest</u> <u>DPs</u>, 25 checks required DP follow-up
 - 22 of the 25 were Level 3 checks

In closing

The Sentinel System supports timely regulatory decision making through

- Increasingly sophisticated, reusable tools that
 - Protect privacy and
 - Execute efficiently in diverse computing environments
- Well curated, analysis ready data

Communications

FDA-Catalyst

Sentinel is a National Medical Product Monitoring System

LEARN MORE

Drugs

- Background
- Coordinating Center
- Privacy and Security
- · The Sentinel System Story

SAFETY ASSESSMENTS

- Active Risk Identification and Analysis System
- Assessments of Drugs
- Assessments of Vaccines, Blood, & Biologics

DATA & SURVEILLANCE TOOLS

- Distributed Database and Common Data Model
- Complementary Data Sources
- Routine Querying Tools
- Validations and Literature Reviews

- FDA Safety Communications
- Publications and Presentations
- Sentinel Initiative Events
- Report Finder

Latest Postings

- SPOTLIGHT
- Sentinel Initiative Public Workshop Ninth Annual Tue, 11/08/2016
- STUDY PROTOCOLS & SURVEILLANCE PLANS

www.sentinelinitiative.org

- Influenza Vaccines and Birth Outcomes Protocol (PRISM)
 Fri, 01/20/2017
- Identify and Evaluate Manufacturer-Level Drug Utilization and Switching Patterns in Sentinel Mon, 12/12/2016

C MODULAR PROGRAMS

- Querying Tools: Overview of Functionality and Technical Documentation *Tue*, 12/27/2016
- Influenza antiviral drug use 2010-2015 Mon, 10/31/2016

Thank you!