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I. OBJECTIVES AND DELIVERABLES  

The purpose of this workgroup was to demonstrate the feasibility of at least one new sequential method 
in the Mini-Sentinel Distributed Database (MSDD) setting. Specifically this project was to build on the 
work from two previous Mini-Sentinel workgroups (1) Year 1 ’Sequential Testing Methods 
Development’1 and (2) Year 2 ‘Enhancing current sequential analytic techniques to improve causal 
inference’2. This workgroup was to implement in the MSDD at least one or more of the statistical 
methods previously developed and further to create statistical code that can be used in a semi-
automated fashion. Specifically we were to demonstrate the technical capability within the MSDD to 
automate both the distributed (run at Data Partner) portion of the code to obtain de-identified data, or 
summary information, that is returned to the coordinating center and then statistical analysis code that 
will be run by the coordinating center to conduct formal statistical analysis for at least one of the 
sequential methods developed in the previous workgroups. We were to test the code at three Data 
Partner sites within the MSDD. We were further asked to automate the code to be conducted for 
multiple interim analyses or looks at the data. 
 
The workgroup was able to implement and apply the following two group sequential methods: Group 
Sequential Generalized Estimating Equation (GS GEE) regression approach and the Group Sequential 
Inverse Probability of Treatment Weighting (GS IPTW) regression approach. For each method the 
following two sets of code were developed (1) distributed data portion and (2) statistical code that takes 
the results from the distributed code and completes the full application of the specific method. The 
distributed portion of the code was particularly challenging due to the limitations of the available SAS 
procedures licensed across different data partners. Specifically, we initially programmed the GS IPTW 
method using the IML package in SAS which is a common program for statisticians who develop new 
methods, but one of the Data Partners did not have this part of the SAS license. We were able to 
reprogram using less efficient SAS procedures, but a lesson learned for future method development is 
that some of the standard statistical software that statisticians use to apply new methods may not be 
available. Further, the group developed statistical code to automate the report of the results which we 
will go over in detail later in this document. Initially we were developing the reports in SAS, but we 
moved this part of the code to R since we were able to create more flexible automated reports that 
were easier to read and interpret. Within this document we will first describe for each group sequential 
method the parameters that are required initially to run such a method and then we will go over the 
results evaluating if the combination vaccine MMRV has higher rates of febrile seizures compared to 
two separate injections of the MMR and V (MMR+V) vaccine. For the example we go back in time and 
mimic if we actually started studying the new combination vaccine MMRV at 4 sites when it first went 
on the market on September 5, 2005.  

II. MS PROMPT: GS IPTW 

A. SUMMARY OF THE METHOD 

Group sequential regression using inverse probability of treatment weighting (GS IPTW) performs site 
stratified IPTW regression estimation in a group sequential testing framework. It first derives at each site 
a site-specific adjusted risk difference (RD) estimate based on IPTW with weights from propensity scores 
adjusted for categorical baseline confounders. It then uses these site-specific RDs to calculate an overall 
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stratified RD across all sites. The method is designed for new user cohort designs where a short-term 
exposure is of interest. 

1. Design 

The method assumes an active-comparator new user cohort design in which there is an exposure of 
interest and an alternative, concurrently used, control exposure. An unexposed control group could also 
be used, but this design is likely to be less common in Mini-Sentinel. The method is designed for short 
term exposures, including one-time exposures (e.g., an injection) or an exposure that occurs for a 
relatively short period of time (e.g., an antibiotic)). It assumes a binary indicator of either being exposed 
or comparator and a binary indicator of the occurrence of an adverse event outcome of interest within a 
pre-specified risk window following product initiation. A person is not included in an analysis until their 
outcome risk window has been fully observed so that all subjects have the same duration of follow-up 
time.  

2. Statistical Analysis 

GS IPTW is a flexible approach that uses IPTW regression to control for baseline categorical confounders 
and estimates a site-stratified adjusted risk difference (RD)2-4. Specifically, it fits a propensity score 
model at each site and then calculates a site-specific adjusted RD using IPTW with the site specific 
propensity scores as weights. It further calculates the variance of each site adjusted RD estimate 
incorporating the fact that the weights are estimated from a model and are not known. These site-
specific adjusted RD estimates and site-specific variances of the RD are sent to a central location. Here, 
this information is combined to calculate an overall site stratified RD estimate and corresponding 
variance. One then calculates a standardized IPTW test statistic (IPTW test=RD/sqrt(var(RD))) and 
compares this statistic to a preset signaling threshold. If the statistic exceeds the threshold, then a signal 
is generated and surveillance stops. If the statistic does not exceed the threshold, then monitoring 
continues. An important advantage of this approach is that it strongly controls for site confounding and 
accounts for potential interactions by site and other confounders. It has also been shown to be as 
efficient as a non-stratified estimate when no site interaction with other baseline confounders exists. 
Further, the method only requires that a minimum of one event occur at a given site in order to be able 
to estimate a RD. In contrast, methods that involve ratio estimators (e.g., relative risks) require that an 
event occur in both the exposed and unexposed group before estimation can begin.  
 
To conduct group sequential monitoring for rare outcomes, GS IPTW uses a non-parametric permutation 
approach that flexibly simulates data under the null hypothesis of no elevated risk in the exposure group 
(i.e. Ho: RD=0) as opposed to making large sample normal approximation assumptions. It uses a unifying 
boundary approach5 to define the boundary based on the permuted data, thus incorporating the 
concepts of both stopping at earlier analysis times and repeated testing (See Appendix for Statistical 
Detail). It requires that the user specify the desired number of analysis times or ‘looks,’ the timing of 
each analysis (based on observed or expected sample size at each analysis time), and a total maximum 
sample size at which the end of surveillance will occur if no signal has been detected. Boundary shape 
can also be flexibly specified and the choice will be dependent on the desired level of the signaling 
thresholds earlier versus later in the surveillance period. A flatter boundary will signal earlier for lower 
elevated risk but will have less power to signal later relative to a boundary that employs early 
conservatism and has a higher threshold early on and more power later. Boundary shape is quantified 
on the scale of a standardized test statistic and is chosen based on what decisions rules are desired (e.g., 
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low boundaries early are only desirable if a specific action is expected to be taken if the statistic exceeds 
that boundary) in combination with statistical criteria. Given the desired boundary shape function and 
the permuted IPTW test statistic under the null, an IPTW test statistic stopping boundary is computed 
that is used to assess whether there is an elevated risk at each analysis time point or if no meaningful 
difference exists and surveillance  should continue. This boundary is designed to hold the overall false 
positive signaling rate at a pre-specific level (e.g., 0.05). 

3. Specific Input Parameters That Need to Be Specified to Conduct Analyses 

We assume that the user has already specified a standard set of dataset parameters (see Figure 1 
Analysis Dataset Parameters) and used them to create a prospective new user cohort. Specifically, the 
exposure and comparator groups of interest have been specified, and the outcome of interest has been 
defined as being binary (i.e., occurring within a pre-specified outcome window after receipt of the 
exposure of interest or comparator product). Further, a set of relevant confounders have been defined 
and categorized (e.g., age has been categorized as 20-29yrs, 30-39yrs, and so on).  
 
Once the analytic dataset is created based on the dataset parameters, a second set of parameters are 
required to specify the sequential monitoring and application of the GS IPTW method (see Figure 1 
Sequential Design Parameters). Figure 1 further shows the flow of how the data and method moves 
from the central coordinating center and is distributed to sites for those interested in further details of 
the process. These additional parameters specify the details for how we will conduct prospective 
surveillance analyses with testing at multiple time points for evidence of an increased risk of a specific 
outcome in the exposed group of interest (typically a new medical product) compared to a comparator 
group. First, we must specify a ‘look plan’ that designates when each analysis will occur. Then the shape 
of the boundary must also be decided a priori. The existing code allows for flexibility in this choice, 
including specification of a flat boundary on the scale of the standardized test statistic, which has been 
used in previous safety surveillance evaluations. The user must also determine what sample size will be 
sufficient at the end of surveillance if no signal occurs (i.e., the maximum sample size). The maximum 
sample size is typically chosen to yield a certain level of power by the end of the surveillance to rule out 
excess risk that would concern the monitoring agency. This maximum sample size needed to achieve a 
specific level of power will vary depending on the look plan (more frequent monitoring requires a larger 
maximum sample size), shape of boundary (flatter boundary shape requires a larger maximum sample 
size), baseline rate of outcome (larger maximum sample for lower baseline outcome rates), proportion 
exposed (further away from 50% exposed the larger the maximum sample size), and confounder 
strength (stronger confounding larger maximum sample size). The complete list of sequential design 
parameters needed to run an analysis are summarized below: 
 
Method and Sequential Parameters 

• Outcome Type: Binary 
• Adjust for Analysis Time: TRUE (only option)  
• Maximum Sample Size: maximum sample size when surveillance will be complete given no 

signal 
• Look Plan: plan of when the analysis will occur (e.g. first analysis after 30,000 observations and 

then 10 evenly spaced looks up to the Maximum sample size.) 
• Boundary Shape: Pocock6, O’Brien Fleming7, or power function 
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Figure 1. Flow Diagram of the MS PROMPT GS IPTW method including parameter specification and in 
general how the method works in the distributed data setting 
 

 
 

MS PROMPT: GS IPTW  
Data and analysis for the IPTW risk difference approach  

COORDINATING CENTER 

Analysis Dataset Parameters 
Cohort Eligibility: timeframe and who 
Outcome: Definition and outcome window  
Exposure: Exposed and Comparator group definitions 
Confounders: All baseline confounders and how to code 
Subgroups: Any subgroup definitions  
Sites: Sites that will be included  

Site-Specific Analysis 
 

1. Calculate Propensity scores using all data up to each time 
2. Calculate site specific IPTW risk difference and variance using method developed in PRISM 
3. Calculate a set of permuted site specific IPTW risk difference and variances for sequential monitoring 

boundary development 
4. Sites send observed IPTW risk difference and variance, permuted set of IPTW risk difference and variance 

estimates to central location 
5. Site further sends model diagnostics that will be developed to help determine if there is an issue with the 

propensity score model or if there are influential weights that need to be trimmed.  

Analysis conducted centrally 
 

1. Look at Diagnostics to determine of the site-specific estimates should be used in the overall stratified 
risk difference estimate 

2. Calculate Stratified IPTW risk difference estimates and variance estimates using site summary data. 
3. Construct Sequential Monitoring boundary using permutation data 

a. For each permuted estimate calculate the stratified IPTW risk difference estimate. 
b. Using the previous boundary values, expected analysis times, update current analysis time cut-off 

3.   Determine if the method has signaled an elevated risk based on updated sequential boundaries 

Sequential Design Parameters 
Boundary Shape: Pocock, O’Brien and Fleming or power 
Analysis Plan: Time of all analyses  
Maximum sample size expected (if not at last look) 
 
Keep from previous method runs: 
Boundary Values used at previous analysis times 
 

COORDINATING CENTER 

MULTIPLE DATA PARTNERS 

Site Analytic Dataset  
Start Time: Time of Study Entry 
Exposure: 0=Comparator; 1=Exposed 
Outcome: 1=Outcome in outcome window; 0 otherwise 
Confounders: Matrix of confounders coded appropriately based start time 
Subgroups: Create indicator variables for different subgroups 
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B. APPLICATION TO MMRV AND MMR+V 

We will now walk through the semi-automated report of surveillance results for the vaccine example 
comparing risk of febrile seizure 7-10 days after receipt of MMRV (exposure of interest) versus MMR+V 
(comparator) among children 12-23 months of age. We will first review the results from Analysis 1 in 
detail. Then we will go over a subset of the results on Analysis 4, when a signal was detected. This 
review is intended to serve as a guide both to summarize the test case findings from the specific vaccine 
example and to showcase more generally what information can currently be provided when running the 
PROMPT: GS IPTW module. The following analysis and sequential parameters have been set for this 
example: 

• Outcome Type: Binary 
• Maximum Sample Size: 118,328 
• Look Plan: Look 1 at 1 year (12 mths), then quarterly looks for an additional 2.5 years (30 mths) 

(i.e., at 364(12 mths), 455(15 mths), 546(18 mths), 637(21 mths), 728(24 mths), 819(27 mths), 
910(30 mths), 1001(33 mths), 1092(36 mths), 1183(39 mths), and 1274(42 mths) days since start 
of surveillance) 

• Boundary Shape: Pocock 

1. Analysis 1 

We will first go over Analysis 1. We will start with a summary of the main features and inputs and then 
discuss tables that provide further detail.  

a. Primary Summary  

Figure 2 summarizes the main features and inputs for the current analysis, including the comparison 
groups, list of confounders, indicator of adjustment for look, look plan, maximum sample size, and 
boundary shape. Table 1 summarizes the demographics of the current analysis dataset by exposure 
group, and Figure 3 describes the uptake of the exposure of interest and comparator (Figure 3).  
 
Table 2 contains the main surveillance results, including data from all analyses up to the current look. 
Correspondingly, Analysis 1 Table 2 contains a single row with results from the first look. Analysis 1 
occurred on day 364 from initial start date (9/6/2005). Among 12,652 new users of MMR+V and 2,726 
new users of MMRV, 0.040% (5 events) and 0.179% (5 events) had febrile seizures, respectively. After 
adjusting for age and sex using IPTW within each site and combining the site-specific RD into a site 
stratified estimate across all sites, the adjusted seizure rate among those exposed to MMR+V was 
0.043% compared to 0.074% for those exposed to MMRV, yielding a RD of 0.031%. The IPTW 
standardized RD test statistic was 0.794, which did not cross the critical boundary of 1.297 (based on 
unifying Pocock boundary calculations, see Appendix for details) and so there was no signal. The first 
look spent 0.025 of the available total cumulative alpha of 0.05. 
 
In addition to these first three parts of the primary results, it may also be important to assess 
differences by site, analysis time, and demographics to see if one site or confounder subgroup is 
especially influential, or if there is an indication that the results vary by analysis time. The next section 
will describe the appendix tables that address these important issues.
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 Figure 2. GS IPTW parameters for MMRV and MMR+V example (taken directly from the Title Page of 
the output) 
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Table 1. GS IPTW for look 1 showing demographics of population by exposure group  
 

 Total N (%) MMR + V N (%) MMRV N (%) 
Total 15448 (100.0) 12652 (81.9) 2796 (18.1) 

Age in months    
11-12  8276 (53.6) 7156 (56.6) 1120 (40.1) 
13-14  3053 (19.8) 2360 (18.7) 693 (24.8) 
15-16  2547 (16.5) 1905 (15.1) 642 (23.0) 
17-19 1075 (7.0) 835 (6.6) 240 (8.6) 
20-23 497 (3.2) 396 (3.1) 101 (3.6) 

Sex    
Male 7909 (51.2) 6497 (51.4) 1412 (50.5) 

Female 7539 (48.8) 6155 (48.6) 1384 (49.5) 
Site    

4 2829 (18.3) 2806 (22.2) 23 (0.8) 
15 6402 (41.4) 3686 (29.1) 2716 (97.1) 
16 6217 (40.2) 6160 (48.7) 57 (2.0) 

 
 
Figure 3. GS IPTW for look 1 showing uptake over time by exposure group   
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Table 2. GS IPTW at look 1 showing primary results  
 

Look Days MMR+V N 

MMR+V 
Outcome 

(%) MMRV N 

MMRV 
Outcome 

(%) 

MMR+V 
Adjusted 

% 
outcome 

MMRV 
Adjusted 

% 
outcome 

Adjusted 
Risk 

Difference
* 

IPTW 
test Boundary 

Error 
spent Signal 

1 364 12652 5(0.040) 2796 5(0.179) 0.043 0.074 0.031 0.794 1.297 0.025 No 
*Adjusted stratified risk difference model applied using GS IPTW with sequential monitoring boundaries based on permutations.  
Covariates included: Age, Sex and indicator for each look within site strata. 
Abbreviations: IPTW=Inverse Probability of Treatment Weighting. Outcome(%)=Number(Risk%) of outcome within look and covariate category. 
Adj=Adjusted. RD=Risk Difference, Adj %Out=Adjusted Risk % from stratified IPTW model for a given exposure group, Adj RD=MMRV Adj %Out – 
MMR+V Adj %Out = stratified IPTW adjusted RD %. IPTW Test = Adj RD/Standard Error (Adj RD), and Boundary = Sequential Boundary to 
compare the IPTW Test Estimate. 
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b. Results by Analysis Time Point and Confounder Strata 

The first semi-automated table, Table 3, provides a summary of outcome counts and risk percent by 
analysis time point and by confounder strata. For Analysis 1, this table contains only one column, but 
new columns will be added automatically as each new analysis is conducted. The table further provides 
information about the potential strength of confounders. As shown in Table 3, at Analysis 1 the percent 
with seizure is higher in older age groups compared to lower age groups, higher in females compared to 
males, and higher at site 15 compared to the other sites. Note there are only 10 outcomes in total and 
so the differences may not be statistically meaningful. 
 
Table 3. GS IPTW at look 1 showing the first appendix table displaying outcome counts and risk % by 
look and covariate strata for MMRV and MMR+V  
 

 Outcome (%) for Look 1 
Total 10 (0.065) 

Age in months  
11-12 3 (0.036) 
13-14 3 (0.098) 
15-16 2 (0.079) 
17-19 1 (0.093) 
20-23 1 (0.201) 

Sex  
Male 4 (0.051) 

Female 6 (0.080) 
Site  

4 1 (0.035) 
15 7 (0.109) 
16 2 (0.032) 

*Abbreviations: Outcome (%) = Number (Risk %) of outcome within look and covariate stratum. 
 
 
The second semi-automated table, Table 4 summarizes outcome counts and risk percent by analysis 
time point and by confounder strata among the exposed group of interest (MMRV). For Analysis 1, this 
table only contains one column, but new columns will be added automatically as each new analysis is 
conducted. This table is designed to provide information about whether or not there is an interaction 
between a given confounder and exposure. Recall that if there is an interaction between exposure and 
site that the GS IPTW method implicitly accounts for this as it conducts a stratified analysis by site. 
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Table 4. GS IPTW at look 1 displaying outcome counts and risk % by look and covariate strata among 
MMRV only  
 

 Outcome (%) for Look 1 
Total 5 (0.179) 

Age in months  
11-12 1 (0.089) 
13-14 1 (0.144) 
15-16 2 (0.312) 
17-19 1 (0.417) 
20-23 0 (0.000) 

Sex  
Male 3 (0.212) 

Female 2 (0.145) 
Site  

4 0 (0.000) 
15 5 (0.184) 
16 0 (0.000) 

*Abbreviations: Outcome (%) = Number (Risk %) of outcome within look and covariate stratum. 
 
 
Table 5. GS IPTW at look 1 displaying demographics across analysis times  
 

 N (%) for Look 1 
Total, N (Row %) 15448 (100.0) 

Age in months, N (Col %)  
11-12 8276 (53.6) 
13-14 3053 (19.8) 
15-16 2547 (16.5) 
17-19 1075 (7.0) 
20-23 497 (3.2) 

Sex, N (Col %)  
Male 7909 (51.2) 

Female 7539 (48.8) 
Site, N (Col %)  

4 2829 (18.3) 
15 6402 (41.4) 
16 6217 (40.2) 
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The third semi-automated table, Table 5, provides demographics by analysis time. This displays any 
potential changes in the demographics of the entire cohort over time. Additionally, Table 6 provides 
demographics over time focusing exclusively on the exposure group of interest (MMRV). When a new 
medical product first comes onto the market, often only a subset of the population is initially exposed. 
Once the product is available for a longer period of time, it will often infiltrate a larger part of the 
market space. One of the attractive aspects of the IPTW method is that, under certain assumptions, the 
results are generalizable to the entire population who may eventually use the new product instead of 
just to those initially exposed. This is due to how the weighting in the IPTW method specifically, weights 
from IPTW are used to upweight those that were unlikely to receive their observed exposure and 
downweight those who were likely to receive their observed exposure based on their baseline 
confounder distribution. Those equally likely to receive either treatment are neutrally weighted. This 
process evens out the baseline covariate distribution to allow estimation of an unconfounded average 
effect in the entire population given no unmeasured confounders. However, to make this population 
estimate it is best to have some coverage of all confounders observed among both the exposed and 
comparator groups. Further this may explain differences compared to other statistical approaches such 
as exposure matching, which generalizes to a population that resembles the exposed group. These 
tables can be especially informative if the overall adjusted RD estimate changes substantially across 
analysis time points, potentially due to changes in the confounder distribution over time (e.g., New site 
is added after analysis 3).  
 
Table 6. GS IPTW at look 1 displaying demographics across analysis times among MMRV (report Table 
A.4) 
 

 N (%) for Look 1 
Total, N (Row %) 2796 (100.0) 

Age in months, N (Col %)  
11-12 1120 (40.1) 
13-14 693 (24.8) 
15-16 642 (23.0) 
17-19 240 (8.6) 
20-23 101 (3.6) 

Sex, N (Col %)  
Male 1412 (50.5) 

Female 1384 (49.5) 
Site, N (Col %)  

4 23 (0.8) 
15 2716 (97.1) 
16 57 (2.0) 

 
 
Figure 4 displays the uptake by site. For this example we included 4 sites, but at Analysis 1 there was no 
exposure uptake at one site so it was not included in the analysis. These figures show immediate, but 
slow, uptake at sites 4 and 16. At site 15, uptake was delayed until about week 20 and then it increased 
quickly.  
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Figure 4. GS IPTW at look 1 displaying uptake of MMR+V and MMRV for each site  
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Table 7, shows the site specific RD results at the current analysis. This table is important for assessing 
whether there is consistency in the estimated RD across sites and how the amount of information 
contributed by each site varies. For this example, the Analysis 1 results are strongly driven by site 15, as 
only 23 and 57 children at sites 4 and 16 were exposed to MMRV relative to 2,716 at site 15. Further, 
there are only one and two outcomes total at sites 4 and 16, respectively, compared to site 15 with 7 
outcomes total.  
 
Table 7. Current analysis (look 1) site specific results  
 

Site 
MMR+V 

N 

MMR+V 
Outcome 

(%) 
MMRV 

N 
MMRV 

Outcome (%) 

MMR+V 
Adjusted % 

outcome 

MMRV 
Adjusted % 

outcome 
Adjusted Risk 

Difference* 
4 2806 1(0.036) 23 0(0.000) 0.036 0.000 -0.036 

15 3686 2(0.054) 2716 5(0.184) 0.056 0.178 0.121 
16 6160 2(0.032) 57 0(0.000) 0.032 0.000 -0.032 

*Adjusted risk difference model applied using IPTW for each site (no Sequential). 
Covariates Included: Age, Sex and indicator for each look within site strata. 
Abbreviations: IPTW=Inverse Probability of Treatment Weighting. Outcome(%)=Number(Risk%) of 
outcome within look and covariate category. Adj=Adjusted. RD=Risk Difference, Adj %Out=Adjusted Risk 
% from site-specific IPTW model for a given exposure group. Adj RD=MMRV Adj %Out – MMR+V Adj 
%Out=site-specific IPTW adjusted RD %. 
 

2. Analysis 4 When a Signal Was First Detected 

We will now review an example for an analysis in which the sequential boundary is crossed and there is 
a signal indicating an elevated risk in the exposure of interest (MMRV). For the MMRV versus MMR+V 
example this occurred at Analysis 4 on day 637 (1.75 years after the start of surveillance). We will first 
look at the Table 8 information showing demographics by exposure group. At Analysis 4, we have a 
cohort of 34,823 children in which 17,502 received MMR+V and 17,321 received MMRV. Similar 
distributions of demographic characteristics were observed in both exposure groups except for site 15 in 
which 81.9% of MMRV recipients compared to only 23.9% of MMR+V recipients reside. We then visually 
display uptake over time by exposure group from GS IPTW Analysis 4 in Figure 5. Figure 5 shows that 
uptake stayed relatively steady for the MMR+V, but increased dramatically over time for MMRV.  
 
The main results for Analysis 4 are displayed in GS IPTW Table 9. The last row shows the primary 
surveillance results for Analysis 4 which was conducted at day 637. Among 17,502 new users of MMR+V, 
7 (0.040%) had a febrile seizure. Among 17,321 new users of MMRV, 18 (0.104%) had a febrile seizure. 
After adjusting at each site for age and sex using IPTW and combining site-specific RD estimates across 
sites into a site stratified estimate, the adjusted seizure rate among MMR+V was 0.028% compared to 
MMRV of 0.080% yielding an adjusted risk difference of 0.052%. The IPTW standardized RD test statistic 
was 2.235, which exceeded the critical boundary of 2.069 and so there was a statistically significant 
signal. For an analysis in which we observe a signal, we provide a sequential adjusted analysis p-value at 
the bottom of the footer. In this example, the sequential p-value was 0.0319 and we were able to detect 
an elevated risk of febrile seizure of 0.052% RD (1 extra febrile seizure per 1,923 exposed to MMRV 
relative to being given MMR+V) after 637 days of surveillance (or after 17,321 exposed children to 
MMRV). We further note that this elevated adjusted RD was consistent across analyses.  
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Table 8. GS IPTW for look 4 showing demographics of population by exposure group for MMRV and 
MMR+V example  
 
 Total MMR+V MMRV 

Total, N (Row%) 34823 (100.0) 17502 (50.3) 17321 (49.7) 
Age, N (Col%)    

11m-12m 17728 (50.9) 10089 (57.6) 7639 (44.1) 
13m-14m 7038 (20.2) 3267 (18.7) 3771 (21.8) 
15m-16m 6171 (17.7) 2434 (13.9) 3737 (21.6) 
17m-19m 2681 (7.7) 1143 (6.5) 1538 (8.9) 
20m-23m 1205 (3.5) 569 (3.3) 636 (3.7) 

Sex, N (Col%)    
Male 17798 (51.1) 9040 (51.7) 8758 (50.6) 

Female 17025 (48.9) 8462 (48.3) 8563 (49.4) 
Site, N (Col%)    

4  5090 (14.6) 4981 (28.5) 109 (0.6) 
15 18353 (52.7) 4175 (23.9) 14178 (81.9) 
16 11380 (32.7) 8346 (47.7) 3034 (17.5) 

 
 

Figure 5. GS IPTW for look 4 showing uptake over time by exposure group for MMRV and MMR+V 
example  
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Table 9. GS IPTW at look 4 showing primary results for MMRV and MMR+V example  
 

Look: Days 
MMR+V 

N 
MMR+V 
Outcome (%) 

MMRV 
N 

MMRV 
Outcome(%) 

MMR+V 
Adj %Out 

MMRV 
Adj %Out 

Adj 
RD* 

IPTW 
Test Boundary 

Error 
Spent Signal 

1: 364 12652 5(0.040) 2796 5(0.179) 0.043 0.074 0.031 0.794 1.297 0.028 No 
2:  455 14633 7(0.048) 6970 10(0.143) 0.045 0.088 0.043 1.261 2.043 0.032 No 
3:  546 15968 7(0.044) 11577 14(0.121) 0.036 0.086 0.051 1.790 2.074 0.032 No 
4:  637 17502 7(0.040) 17321 18(0.104) 0.028 0.080 0.052 2.235 2.069 0.032 Yes 
*Adjusted stratified risk difference model applied using GS IPTW with sequential monitoring boundaries based on permutations. 
Covariates Included: Age, Sex, and indicator for each look within site strata. 
Abbreviations: IPTW=Inverse Probability of Treatment Weighting, Outcome(%)=Number(Risk %) of outcome within look and covariate category, 
Adj=Adjusted, RD=Risk Difference, Adj %Out=Adjusted Risk % from stratified IPTW model for a given exposure group, Adj RD= MMRV Adj%Out – 
MMR+V Adj %Out = stratified IPTW adjusted RD %, IPTW Test =Adj RD/Standard Error(Adj RD), and Boundary = Sequential Boundary to compare 
the IPTW Test Estimate. 
Sequential P-Value at Signal: 0.0319 
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a. Appendix Results for GS IPTW at Signal (Look 4) 

We will now look more into the data to assess if there is any obvious issues that might make us question 
our results. Table 10 shows how the outcome incidence rate changed over analysis time by confounder 
strata. Over time there are relatively similar incidence rates, and nothing seems to be changing 
drastically by site which is a good indication that coding practices did not change substantially over the 
surveillance period.  
 
Table 10. GS IPTW at look 4 showing outcome and incidence rates by look and covariate strata  
 

 Look 1 Look 2 Look 3 Look 4 
Total, Outcome(%) 10 (0.065) 17 (0.079) 21 (0.076) 25 (0.072) 

Age, Outcome(%)     
11m-12m 3 (0.036) 6 (0.053) 7 (0.050) 9 (0.051) 
13m-14m 3 (0.098) 4 (0.094) 5 (0.090) 5 (0.071) 
15m-16m 2 (0.079) 2 (0.054) 2 (0.041) 3 (0.049) 
17m-19m 1 (0.093) 3 (0.192) 4 (0.195) 4 (0.149) 
20m-23m 1 (0.201) 2 (0.275) 3 (0.329) 4 (0.332) 

Sex, Outcome(%)     
Male 4 (0.051) 8 (0.072) 10 (0.071) 12 (0.067) 

Female 6 (0.080) 9 (0.085) 11 (0.082) 13 (0.076) 
Site, Outcome(%)     

4  1 (0.035) 1 (0.028) 1 (0.023) 1 (0.020) 
15 7 (0.109) 10 (0.100) 13 (0.095) 17 (0.093) 
16 2 (0.032) 6 (0.075) 7 (0.073) 7 (0.062) 

 
 
Table 11 displays the site-specific RD analysis results. Here we see that the elevated risk is only occurring 
at Site 15, with an adjusted RD of 0.100%. The estimated RD at site 16 is close to null (0.006%) and Site 4 
has little exposure uptake yielding little influence on the results. Therefore, if we were truly conducting 
this surveillance activity, to confirm our results it would be advantageous to attempt to add additional 
sites since the elevated rate is only observed in one site.  
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Table 11. GS IPTW showing Look 4 analysis site specific results  
 

 Look 1 Look 2 Look 3 Look 4 
Total, Outcome(%) 5 (0.179) 10 (0.143) 14 (0.121) 18 (0.104) 

Age, Outcome(%)     
11m-12m 1( 0.089) 4 (0.135) 5 (0.100) 7 (0.092) 
13m-14m 1 (0.144) 2 (0.129) 3 (0.118) 3 (0.080) 
15m-16m 2 (0.312) 2 (0.124) 2 (0.075) 3 (0.080) 
17m-19m 1 (0.417) 2 (0.338) 3 (0.295) 3 (0.195) 
20m-23m 0 (0.000) 0 (0.000) 1 (0.255) 2 (0.314) 

Sex, Outcome(%)     
Male 3 (0.212) 5 (0.141) 7 (0.120) 9 (0.103) 

Female 2 (0.145) 5 (0.146) 7 (0.122) 9 (0.105) 
Site, Outcome(%)     

4 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 
15 5 (0.184) 8 (0.131) 11 (0.133) 15 (0.106) 
16 0 (0.000) 2 (0.240) 3 (0.166) 3 (0.099) 

*Abbreviations: Outcome (%)=Number(Risk %) of outcome within look and covariate stratum. 

III. MS PROMPT: GS GEE 

A. SUMMARY OF THE METHOD 

This method performs regression estimation and group sequential testing using categorical baseline 
confounder adjustment through GEE for new user cohorts. 

1. Design 

The design assumes an active-comparator new user cohort design in which there is an exposure of 
interest and a concurrent control exposure. For short term exposures (i.e. one-time exposure (injection) 
or a short period of time (antibiotic)) it assumes a binary indicator of being exposed or unexposed and a 
binary outcome window within a pre-specified risk window following product initiation. We assume that 
a person is not included in the analysis until the completion of the outcome risk window has been fully 
observed so that all short term exposures have the same follow-up time.  
 
For longer term exposure (i.e. drug taken over several months or years) it only uses the first indication of 
taking either the exposure of interest or comparator and counts the length of being exposed up to time 
stopping taking the either exposure (with a lag if desired), if the outcome of interest occurs, or if the 
person stops being enrolled. The outcome is assumed to be binary, occurring or not occurring, while the 
person is still being exposed (with a lag if desired).  

2. Statistical Analysis 

Group Sequential regression using GEE (GS GEE) is a flexible approach that uses regression to control for 
baseline categorical confounders. It uses a general GEE framework that can handle different exposure 
and outcome types. Specifically, for short term exposures it assumes a binomial outcome with a logit 
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link function to estimate an adjusted odds ratio (OR) as the measure of elevated risk in an exposure 
group relative to a comparator group. For chronic exposures a Poisson regression approach is used that 
takes into account length of exposure and estimates an adjusted relative rate (RR). For both outcome 
types the GS GEE method calculates a score test statistic and uses this standardized test statistic to 
inform signaling for elevated risk or continuation of monitoring.  
 
To incorporate group sequential monitoring, GS GEE uses a non-parametric permutation approach, that 
is particularly suited for rare outcomes, by flexibly simulating data under the null hypothesis of no 
elevated risk in the exposure group (i.e. OR=RR=1). It uses the unifying boundary approach5 to define 
the boundary based on the permuted data, thus incorporating the concepts of both stopping at earlier 
analysis times and repeated testing (See Appendix for Statistical Details). It requires a specified number 
of analysis times, timing of analyses (based on observed, or expected sample size, at each analysis time), 
and a total expected sample size by end of study. Boundary shape is dependent on desired signaling 
thresholds earlier versus later in a study. Flatter boundaries will signal earlier for lower elevated risk, but 
will have less power to signal later in the study relative to boundaries that have a higher threshold to 
signal early in the study yielding more power to signal later. Boundary shape is viewed based on a 
standardized test statistic chosen based on what decisions rules are desired (i.e. low boundaries early 
are only desirable if an action is to be taken for a given signal) in combination with statistical criteria. 
Given the boundary shape function and permuted score test statistic under the null, we use this 
boundary to yield a score test statistic boundary that will be the stopping boundary for indicating if 
there is an elevated risk or if the study is to continue. 

3. Specific Parameters That Need to Be Specified to Conduct Analyses 

We assume that the user has already specified a standard set of dataset parameters (see Figure 6 
Analysis Dataset Parameters) and used them to create a prospective new user cohort. Specifically, the 
exposure of interest and comparator have been defined and the outcome of interest has been defined 
as being either binary (i.e. happened within a pre-specified outcome window after being exposed to the 
exposure of interest or comparator) or Poisson type outcome that incorporates variable exposure time 
(i.e. outcome is 1 if that outcome occurs while being exposed to either the exposure of interest or 
comparator (with a potential outcome lag if that exposure stopped and allow outcomes a fixed window 
after exposure stopping) and 0 otherwise; follow-up time is from initiation of exposure of medical 
product up to either having the outcome, censoring due to disenrollment from health plan, death, or 
stopped taking exposure (with a potential outcome lag)). Further, a set of relevant confounders have 
been defined and categorized (e.g., age has been categorized as 20-29yrs, 30-39yrs, and so on).  
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Figure 6. Flow Diagram of the MS PROMPT GS GEE method including parameter specification and in 
general how the method works in the distributed data setting 

 
  

MS PROMPT GS GEE:  
Data and Analysis structure for the GEE regression approach  

COORDINATING CENTER 

Analysis Dataset Parameters 
Cohort Eligibility: timeframe and who 
Outcome: Definition and outcome window  
Exposure: Exposed and Comparator group definitions 
Exposure time: duration of exposure time up to outcome,    
  or stop taking drug (lag window), or administrative drop- 
  out (for vaccines this does not need to be specified) 
Confounders: All baseline confounders and how to code 
Sites: Sites that will be included in analysis 
Subgroups: Any subgroups 

Analysis conducted centrally 
1. Put all site datasets into a single analytic data that is either aggregated or individual-level and add site 

as a confounder 
2. Calculate a regression adjusted odds ratio (binary outcomes with fixed exposure) or relative risk 

(binary outcomes with variable exposure) estimate and corresponding score statistic. 
3. Construct Sequential Monitoring boundary using permutation approach 

a. For earlier analysis times create future data by sampling with replacement current observed 
outcomes, exposures, exposure times, and confounders (variance calculations for boundaries). 

b. Fix outcome and confounder data and permute exposure and exposure time data within analysis 
time to create a dataset under the null of no effect of exposure of interest calculate score statistic. 

4.   Determine if the method has signaled an elevated risk based on updated sequential boundaries 

Sequential Design Parameters 
Boundary Shape: Pocock, O’Brien and Fleming or power 
Analysis Plan: Time of all analyses  
Maximum sample size expected (if not at last look) 
 
Keep from previous method runs: 
Boundary Values used at previous analysis times 
 

COORDINATING CENTER 

MULTIPLE DATA PARTNERS 

Site Analytic Dataset  
Start Time: Time of Study Entry 
Exposure: 0=Comparator; 1=Exposed 
Exposure Time: time to event or censoring (long term exposures) 
Outcome: 1=Outcome occurred; 0 censored 
Confounders: Matrix of confounders coded appropriately based at start time 
Subgroups: Create indicator variables for different subgroups 

Deidentified Site Data to be sent to Coordinating Center 
 
Deidentify data by creating categorical confounders (i.e. create age categories instead of sending age).  Preferable 
to keep data still at individual-level, but deidentified, for exposure time sensitivity analyses. Can create aggregated 
data in which one calculates counts of total number of outcomes and total exposure time within confounder strata.  
Keeps track of subgroups of interest when aggregating data. 
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Once the analytic dataset is created based on the dataset parameters, a second set of parameters are 
required to specify the sequential monitoring and application of the GS GEE method (see Figure 6 
Sequential Design Parameters). Figure 6 further shows the flow of how the data and method moves 
from the central coordinating center and is distributed to sites for those interested in further details of 
the process. These additional parameters specify the details for how we will conduct prospective 
surveillance analyses with testing at multiple time points for evidence of an increased risk of a specific 
outcome in the exposed group of interest (typically a new medical product) compared to a comparator 
group. First, we must specify a ‘look plan’ that designates when each analysis will occur. Then the shape 
of the boundary must also be decided a priori. The existing code allows for flexibility in this choice, 
including specification of a flat boundary on the scale of the standardized test statistic, which has been 
used in previous safety surveillance evaluations. The user must also determine what sample size will be 
sufficient at the end of surveillance if no signal occurs (i.e., the maximum sample size). The maximum 
sample size is typically chosen to yield a certain level of power by the end of the surveillance to rule out 
excess risk that would concern the monitoring agency. This maximum sample size needed to achieve a 
specific level of power will vary depending on the look plan (more frequent monitoring requires a larger 
maximum sample size), shape of boundary (flatter boundary shape requires a larger maximum sample 
size), baseline rate of outcome (larger maximum sample for lower baseline outcome rates), proportion 
exposed (further away from 50% exposed the larger the maximum sample size), and confounder 
strength (stronger confounding larger maximum sample size). The complete list of sequential design 
parameters needed to run an analysis are summarized below: 
 
Method and Sequential Parameters 

• Outcome Type: Binary 
• Adjust for Analysis Time: NO or YES (Adjust for indicator of analysis time) 
• Maximum Sample Size: maximum sample size when surveillance will be complete given no 

signal 
• Look Plan: plan of when the analysis will occur (e.g. first analysis after 30,000 observations and 

then 10 evenly spaced looks up Maximum Sample Size) 
• Boundary Shape: Pocock6, O’Brien Fleming7, or power function 

B. APPLICATION TO MMRV AND MMR+V 

We will now walk through the surveillance results for the vaccine example comparing risk of febrile 
seizure 7-10 days after receipt of MMRV (exposure of interest) versus MMR+V (comparator) among 
children 12-23 months of age. We will first review Analysis 1 in detail. Then we will go over a subset of 
the results on Analysis 8, when a signal was detected. This review is intended to serve as a guide both to 
summarize the test case findings from the specific vaccine example and to showcase more generally 
what information can currently be provided when running the PROMPT: GS GS GEE module. The 
following analysis and sequential parameters have been set for this example: 

• Outcome Type: Binary 
• Adjust for Analysis Time: YES 
• Maximum Sample Size: 118,328 
• Look Plan: Look 1 at 1 year, then quarterly looks for an additional 2.5 years 

(i.e., at 364(12mths), 455(15mths), 546(18mths), 637(21mths), 728(24mths), 819(27mths), 
910(30mths), 1001(33mths), 1092(36mths), 1183(39mths), and 1274(42mths)  days since start 
of surveillance) 

Methods Development                                                          - 20 -                      GS IPTW and GS GEE Methods Application 



 
  
 
 
 

• Boundary Shape: Pocock 

1. Analysis 1 

We will first go over each page of the report generated for Analysis 1. We will start with a summary of 
the main features and inputs for Analysis 2 and will then discuss tables that provide further detail.  

a. Primary Summary  

Figure 7 summarizes the main features and inputs for the current analysis, including the comparison 
groups, list of confounders, indicator of adjustment for look, look plan, maximum sample size, and 
boundary shape. Table 12 summarizes the demographics of the current analysis dataset by exposure 
group, and Figure 8 displays the uptake of the exposure of interest and comparator.  
 
Table 13 provides main surveillance results, including data from all analyses up to the current look. 
Correspondingly, Analysis 1 contains a single row with results from the first look. Analysis 1 occurred on 
day 364 from initial start date (9/6/2005). Among 12,652 new users of MMR+V and 2,726 new users of 
MMRV, 0.040% (5 events) and 0.179% (5 events) had febrile seizures, respectively. After adjusting for 
age, sex and site using GS GEE, the adjusted seizure rate among those exposed to MMR+V was 0.043% 
compared to 0.131% for those exposed to MMRV, yielding an adjusted OR of 3.05. The GS GEE 
standardized Score Test Statistic was 1.842, which did not cross the critical boundary of 3.407 and so 
there was no signal (See Statistical Appendix, Section VI, for how boundary was calculated). The first 
look spent <0.001 of the available total cumulative alpha of 0.05. 
 
In addition to these first three parts of the primary results, it may also be important to assess 
differences by site, analysis time, and demographics to see if one site or confounder subgroup is 
especially influential, or if there is an indication that the results vary by analysis time. The next section 
will describe these important issues.   
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Figure 7. GS GEE parameters for MMRV and MMR+V example (taken directly from the Title Page of 
the output) 
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Table 12. GS GEE for look 1 showing demographics of population by exposure group  
 
 Total MMR+V MMRV 
Total, N(Row%) 15448 (100.0) 12652 (81.9) 2796 (18.1) 
Age, N(Col%)    
11m-12m 8276 (53.6) 7156 (56.6) 1120 (40.1) 
13m-14m 3053 (19.8) 2360 (18.7) 693 (24.8) 
15m-16m 2547 (16.5) 1905 (15.1) 642 (23.0) 
17m-19m 1075 (7.0) 835 (6.6) 240 (8.6) 
20m-23m 497 (3.2) 396 (3.1) 101 (3.6) 
Sex, N(Col%)    
Male 7909 (51.2) 6497 (51.4) 1412 (50.5) 
Female 7539 (48.8) 6155 (48.6) 1384 (49.5) 
Site, N(Col%)    
2 0 (0.0) 0 (0.0) 0 (0.0) 
4 2829 (18.3) 2806 (22.2) 23 (0.8) 
15 6402 (41.4) 3686 (29.1) 2716 (97.1) 
16 6217 (40.2) 6160 (48.7) 57 (2.0) 
 
 
Figure 8. GS GEE for look 1 showing uptake over time by exposure group  
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Table 11. GS GEE report table 2 at look 1 showing primary results  
 

Look: Days 
MMR+V 

N 
MMR+V 
Outcome(%) 

MMRV 
N 

MMRV 
Outcome(%) 

MMR+V 
Adj 

%Out 

MMRV 
Adj 
%Out 

Adj 
OR* 

Score 
Test Boundary 

Error 
Spent Signal 

1: 364 12652 5(0.040) 2796 5(0.179) 0.043 0.131 3.05 1.842 3.407 0.000 No 
*Adjusted logistic regression model applied using GEE framework with sequential monitoring boundaries based on permutations. 
Covariates Included: Age, Sex, Site, and indicator for each look. 
Abbreviations: Outcome(%)=Number(Risk %) of outcome within look and covariate category, Adj= Adjusted, Adj %Out= Adjusted risk % from 
adjusted logistic regression model assuming entire population was either exposed or unexposed, Adj OR= Adjusted Odds Ratio comparing 
MMRV to MMR+V from logistic regression model, Score Test = Score Test statistic from GEE logistic regression model, and Boundary = 
Sequential Boundary to compare the Score Test Estimate. 
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b. Results by Analysis Time Point and Confounder Strata 

Table 14 provides a summary of outcome counts and incidence rates by analysis time point and by 
confounder strata. For Analysis 1, this table contains only one column, but new columns will be added 
automatically as each new analysis is conducted. The table further provides information about the 
potential strength of confounders. As shown in Table 14, at Analysis 1 the percent with seizure is higher 
in older age groups compared to lower age groups, higher in females compared to males, and higher at 
site 15 compared to the other sites. Note there are only 10 outcomes in total and so the differences may 
not be statistically meaningful. 
 
Table 12. GS GEE at look 1 displaying outcome counts and risk % by look and covariate strata for 
MMRV and MMR+V example  
 

 Look 1 
Total, Outcome (%) 10 (0.065) 

Age, Outcome (%)  
11m-12m 3 (0.036) 
13m-14m 3 (0.098) 
15m-16m 2 (0.079) 
17m-19m 1 (0.093) 
20m-23m 1 (0.201) 

Sex, Outcome (%)  
Male 4 (0.051) 

Female 6 (0.080) 
Site, Outcome (%)  

2 0 (NaN) 
4 1 (0.035) 

15 7 (0.109) 
16 2 (0.032) 

*Abbreviations: Outcome(%)=Number(Risk %) of outcome within look and covariate stratum. 
 
 
The second semi-automated appendix table, Table 15 (or Table A2 in the report) summarizes outcome 
counts and incidence rates by analysis time point and by confounder strata among the exposed group of 
interest (MMRV). For Analysis 1, this table only contains one column, but new columns will be added 
automatically as each new analysis is conducted. This table is designed to provide information about 
whether or not there is an interaction between a given confounder and exposure.  
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Table 13. GS GEE at look 1 displaying outcome counts and risk % by look and covariate strata among 
MMRV only  
 

 Look 1 
Total, Outcome (%) 5 (0.179) 

Age, Outcome (%)  
11m-12m 1 (0.089) 
13m-14m 1 (0.144) 
15m-16m 2 (0.312) 
17m-19m 1 (0.417) 
20m-23m 0 (0.000) 

Sex, Outcome (%)  
Male 3 (0.212) 

Female 2 (0.145) 
Site, Outcome (%)  

2 0 (NaN) 
4 0 (0.000) 

15 5 (0.184) 
16 0 (0.000)  

*Abbreviations: Outcome(%)=Number(Risk %) of outcome within look and covariate stratum. 
 

 
Table 14. GS GEE at look 1 displaying demographics across analysis times  
 

 Look 1 
Total, N (Row%) 15448 (100.0) 

Age, N (Col%)  
11m-12m 8276 (53.6) 
13m-14m 3053 (19.8) 
15m-16m 2547 (16.5) 
17m-19m 1075 (7.0) 
20m-23m 497 (3.2) 

Sex, N (Col%)  
Male 7909 (51.2) 

Female 7539 (48.8) 
Site, N (Col%)  

2 0 (0.0) 
4 2829 (18.3) 

15 6402 (41.4) 
16 6217 (40.2)  

 
 

Table 16 provides demographics by analysis time. This displays any potential changes in the 
demographics of the entire cohort over time. Additionally, Table 17 provides demographics over time 
focusing exclusively on the exposure group of interest (MMRV). When a new medical product first 
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comes onto the market, often only a subset of the population is initially exposed. Once the product is 
available for a longer period of time, it will often infiltrate a larger part of the market space. These tables 
can be especially informative if the adjusted OR changes substantially across analysis time points, 
potentially due to changes in the confounder distribution over time.  
 
Table 15. GS GEE at look 1 displaying demographics across analysis times among MMRV  
 

 Look 1 
Total, N (Row%) 2796 (100.0) 

Age, N (Col%)  
11m-12m 1120 (40.1) 
13m-14m 693 (24.8) 
15m-16m 642 (23.0) 
17m-19m 240 (8.6) 
20m-23m 101 (3.6) 

Sex, N (Col%)  
Male 1412 (50.5) 

Female 1384 (49.5) 
Site, N (Col%)  

2 0 (0.0) 
4 23 (0.8) 

15 2716 (97.1) 
16 57 (2.0)  

 
 
Figure 9 displays the uptake by site. For this example we included 4 sites, but at Analysis 1 there was no 
uptake at one site so it was not included in the analysis. These figures show immediate, but slow, uptake 
at sites 4 and 16. At site 15, uptake was delayed until about week 20 and then it increased quickly.  
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Figure 9. GS GEE at look 1 displaying uptake of MMR+V and MMRV for each site (Excludes site 2 due to no uptake)  
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Table 18 shows the site specific adjusted results at the current analysis. This table is important for 
assessing whether there is consistency in the estimated adjusted OR across sites and how the amount of 
information contributed by each site varies. For this example, the Analysis 1 results are mainly driven by 
site 15, as only 23 and 57 children at sites 4 and 16 were exposed to MMRV relative to 2,716 at site 15. 
Further, there are only one and two outcomes total at sites 4 and 16, respectively, compared to site 15 
with 7 outcomes total.  
 
Table 16. Current analysis site specific results (report Table A.5) 
 

Site 
MMR+V 

N 
MMR+V 

Outcome(%) 
MMRV 

N 
MMRV 

Outcome(%) 
MMR+V 

Adj %Out 
MMRV 

Adj %Out 
Adj 

OR(SE)* 
2 0 0(  ) 0 0(  )   (  ) 
4 2806 1(0.036) 23 0(0.000) 0.036 0.000 0.00(Inf) 

15 3686 2(0.054) 2716 5(0.184) 0.050 0.158 3.16(2.31) 
16 6160 2(0.032) 57 0(0.000) 0.026 0.000 0.00(Inf) 

*Site-specific adjusted logistic regression model (no Sequential). 
Covariates Included: Age, Sex and indicator for each look. 
Abbreviations: Outcome(%)=Number(Risk %) of outcome within look and covariate category, 
Adj=Adjusted, Adj %Out=Adjusted Risk % from site-specific adjusted logistic regression model assuming 
entire site population was either exposed or unexposed, and Adj OR(SE)= Adjusted Odds Ratio (Standard 
Error) comparing MMRV to MMR+V from site-specific logistic regression model. 
 

2. Analysis 8 When a Signal Was First Detected 

We will now review an analysis in which the sequential boundary is crossed and there is a signal 
indicating an elevated risk in the exposure of interest (MMRV). For the MMRV versus MMR+V example 
this occurred at Analysis 8 on day 1001 (2.75 years after the start of surveillance). We will first look at 
the Table 19 information showing demographics by exposure group. At Analysis 8, we have a cohort of 
83,370 children in which 35,137 received MMR+V and 48,233 received MMRV. Similar distributions of 
demographic characteristics were observed in both exposure groups except for site 15 in which had 
81.5% of MMRV recipients compared to only 20.8% of MMR+V recipients. We then visually display 
uptake over time by exposure group from GS GEE Analysis 8 in Figure 9. Figure 1 shows that uptake 
stayed very low for MMRV up to 50 weeks into the study and then dramatically increased over time 
surpassing MMR+V around study week 95 with both vaccines steadily increasing thereafter.  
 
The main results for Analysis 8 are displayed in GS GEE Table 20. The last row shows the primary 
surveillance results for Analysis 8 which was conducted at day 1001. Among 35,137 new users of 
MMR+V, 13 (0.037%) had a febrile seizure. Among 48,233 new users of MMRV, 45 (0.093%) had a febrile 
seizure. After adjusting for age, sex, and site using logistic GEE the adjusted seizure rate among MMR+V 
was 0.038% compared to MMRV of 0.091% yielding an adjusted OR of 2.37. The GS GEE Score test 
statistic was 5.783, which exceeded the critical boundary of 3.832 and so there was a statistically 
significant signal. For an analysis in which we observe a signal, we provide a sequential adjusted analysis 
p-value at the bottom of the footer. In this example, the sequential p-value was 0.030 and we were able 
to detect an elevated risk of febrile seizure of 2.37 OR after 1001 days of surveillance (or after 48,233 
exposed children to MMRV). We further note that this elevated adjusted OR was consistent across 
analyses.  
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Table 19. Demographics of population by exposure group for MMRV and MMR+V at look 8  
 

 Total MMR+V MMRV 
Total, N(Row%) 83370 (100.0) 35137 (42.1) 48233 (57.9) 

Age, N(Col%)    
11m-12m 45105 (54.1) 21207 (60.4) 23898 (49.5) 
13m-14m 16752 (20.1) 6101 (17.4) 10651 (22.1) 
15m-16m 13024 (15.6) 4798 (13.7) 8226 (17.1) 
17m-19m 5717 (6.9) 2030 (5.8) 3687 (7.6) 
20m-23m 2772 (3.3) 1001 (2.8) 1771 (3.7) 

Sex, N (Col%)    
Male 42600 (51.1) 18052 (51.4) 24548 (50.9) 

Female 40770 (48.9) 17085 (48.6) 23685 (49.1) 
Site, N (Col%)    

2 10992 (13.2) 8730 (24.8) 2262 (4.7) 
4 8088 (9.7) 7686 (21.9) 402 (0.8) 

15 46655 (56.0) 7321 (20.8) 39334 (81.5) 
16 17635 (21.2) 11400 (32.4) 6235 (12.9) 
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Figure 10. GS GEE for look 8 showing uptake over time by exposure group for MMRV and MMR+V 
example  
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Table 20. Primary results for MMRV and MMR+V example at look 8  
 

Look: Days 
MMR+V 
N 

MMR+V 
Outcome 
(%) MMRV N 

MMRV 
Outcome 
(%) 

MMR+V 
Adj 
%Out 

MMRV 
Adj 
%Out 

Adj 
OR* 

Score 
Test Boundary 

Error 
Spent Signal 

1: 364 12652 5(0.040) 2796 5(0.179) 0.043 0.131 3.05 1.842 3.407 0.000 No 
2: 455 14633 7(0.048) 6970 10(0.143) 0.047 0.150 3.20 2.791 4.329 0.012 No 
3: 546 15968 7(0.044) 11577 14(0.121) 0.044 0.119 2.69 2.787 4.493 0.012 No 
4: 637 17560 7(0.040) 17376 18(0.104) 0.045 0.093 2.09 2.124 3.678 0.017 No 
5: 728 21491 8(0.037) 24195 21(0.087) 0.042 0.079 1.86 2.038 3.873 0.019 No 
6: 819 26169 10(0.038) 32123 29(0.090) 0.041 0.085 2.07 3.683 3.802 0.026 No 
7: 910 30385 12(0.039) 40326 36(0.089) 0.045 0.081 1.79 2.513 3.601 0.029 No 
8: 1001 35137 13(0.037) 48233 45(0.093) 0.038 0.091 2.37 5.783 3.832 0.038 Yes 

*Adjusted logistic regression model applied using GEE framework with sequential monitoring boundaries based on permutations. 
Covariates Included: Age, Sex, and Site. 
Abbreviations: Outcome(%)=Number (Risk %) of outcome within look and covariate category. Adj=Adjusted, Adj %Out= Adjusted Risk % from 
adjusted logistic regression model assuming entire population was either exposed or unexposed, Adj OR= Adjusted Odds Ratio comparing 
MMRV to MMR+V from logistic regression model, Score Test = Score Test statistic from GEE logistic regression model, and Boundary = 
Sequential Boundary to compare the Score Test Estimate.  
Sequential P-Value at Signal: 0.03 
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a. Appendix Results for GS GEE at Signal (Look 8) 

We will now look more into the data to assess if there is any obvious issues that might make us question 
our results. Table 21 shows how the outcome incidence rate changed over analysis time by confounder 
strata. Over time there are relatively similar incidence rates, and nothing seems to be changing 
drastically by site which is a good indication that coding practices did not change substantially over the 
surveillance period.  
 
Table 22 displays the site-specific adjusted OR analysis results. Here we see that the elevated risk is 
consistent across sites 2, 15, and 16 with adjusted OR ranging from 1.88 to 3.08. Site 4 has little 
exposure uptake yielding little influence on the results and is not able to calculate a site specific adjusted 
OR due to no outcomes in MMRV. Having a consistent elevated risk assures us that our overall results 
are likely indicative of a true elevated risk of febrile seizure due to MMRV. 
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Table 21. GS GEE outcome and incidence rates by look and covariate strata at look 8  
 
 Look 1 Look 2 Look 3 Look 4 Look 5 Look 6 Look 7 Look 8 
Total, 
Outcome(%) 

10 
(0.065) 

17 
(0.079) 

21 
(0.076) 

25 
(0.072) 

29 
(0.063) 

39 
(0.067) 

48 
(0.068) 

58 
(0.070) 

Age, 
Outcome(%)         

11m-12m 3 (0.036) 6 (0.053) 
7 
(0.050) 

9 
(0.051) 

11 
(0.046) 

16 
(0.052) 

18 
(0.048) 

23 
(0.051) 

13m-14m 3 (0.098) 4 (0.094) 
5 
(0.090) 

5 
(0.071) 6 (0.066) 9 (0.077) 

11 
(0.078) 

13 
(0.078) 

15m-16m 2 (0.079) 2 (0.054) 
2 
(0.041) 

3 
(0.049) 3 (0.038) 4 (0.041) 6 (0.052) 8 (0.061) 

17m-19m 1 (0.093) 3 (0.192) 
4 
(0.195) 

4 
(0.149) 5 (0.151) 6 (0.148) 9 (0.185) 9 (0.157) 

20m-23m 1 (0.201) 2 (0.275) 
3 
(0.329) 

4 
(0.331) 4 (0.256) 4 (0.204) 4 (0.172) 5 (0.180) 

Sex, 
Outcome(%)         

Male 4 (0.051) 8 (0.072) 
10 
(0.071) 

12 
(0.067) 

14 
(0.060) 

17 
(0.057) 

20 
(0.055) 

25 
(0.059) 

Female 6 (0.080) 9 (0.085) 
11 
(0.082) 

13 
(0.076) 

15 
(0.067) 

22 
(0.077) 

28 
(0.081) 

33 
(0.081) 

Site, 
Outcome(%)         

2 0 (Nan) 0 (NaN) 0 (NaN) 
0 
(0.000) 2 (0.069) 4 (0.072) 5 (0.060) 6 (0.055) 

4 1 (0.035) 1 (0.028) 
1 
(0.023) 

1 
(0.020) 1 (0.017) 1 (0.015) 1 (0.014) 1 (0.012) 

15 7 (0.109) 
10 
(0.100) 

13 
(0.095) 

17 
(0.093) 

19 
(0.079) 

25 
(0.080) 

33 
(0.085) 

38 
(0.081) 

16 2 (0.032) 6 (0.075) 
7 
(0.073) 

7 
(0.062) 7 (0.054) 9 (0.061) 9 (0.056) 

13 
(0.074) 
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Table 22. GS GEE Look 8 analysis site specific results  
 

Site 
MMR+V  

N 
MMR+V 

Outcome(%) 
MMRV 

N 
MMRV 

Outcome(%) 
MMR+V 

Adj %Out 
MMRV 

Adj %Out 
Adj 

OR(SE)* 
2 8730 4(0.046) 2262 2(0.088) 0.063 0.118 1.88(2.38) 
4 7686 1(0.013) 402 0(0.000) 0.013 0.000 0.00(Inf) 

15 7321 3(0.041) 39334 35(0.089) 0.041 0.088 2.15(1.83) 
16 11400 5(0.044) 6235 8(0.128) 0.051 0.156 3.08(1.77) 

Site-specific adjusted logistic regression model (no Sequential). 
Covariates Included: Age, Sex. 
Abbreviations: Outcome(%)=Number(Risk %) of outcome within look and covariate category, Adj=Adjusted, Adj 
%Out= Adjusted Risk % from site-specific adjusted logistical regression model assuming entire site population was 
either exposed or unexposed, and Adj OR(SE)= Adjusted Odds Ratio (Standard Error) comparing MMRV to MMR+V 
from site-specific logistic regression model. 
 

IV. COMPARISON OF MMRV RESULTS ACROSS METHODS AND PREVIOUS 
PUBLISHED FINDINGS 

As has been shown in this report both statistical methods, GS IPTW and GS GEE, found evidence for 
elevated risk of febrile seizure among children vaccinated with the combination vaccine MMRV relative 
to two separate injections of MMR and V (MMR+V) vaccines. Using the same analysis look plan of 
waiting to look until one year after licensure (15,558 children vaccinated with 2,796 vaccinated with 
MMRV) and then quarterly looks there after (between 6,000-12,000 vaccinated children with 4,000-
8000 vaccinated with MMRV) the GS IPTW method signaled at the 4th analysis at 1.75 years (17,376 
MMRV doses) since licensure compared to the GS GEE method at the 8th analysis at 2.75 years (48,233 
MMRV doses) since licensure. This resulted in 30,857 additional doses of MMRV within our study 
population before the GS GEE method would signal compared to the GS IPTW method. The weighted RD 
estimated at the time of signal from the GS IPTW was 5.2 per 10,000 doses with a relative risk of 2.86 
(0.080/0.028). The adjusted OR estimated at the time of signal from the GS GEE model was 2.37 
resulting in an estimated RD of 5.3 per 10,000 doses (9.1-3.8 from the adjusted risk estimates using 
logistic regression). Therefore, both approaches estimated similar magnitude of risk at their 
corresponding time of signal, but the GS IPTW was able to signal 1 year earlier (30,857 MMRV doses) 
than the GS GEE method. 
 
This example shows the capability of the methods in the FDA Sentinel data system (using a subset of 
sites), but it is also important to compare to findings previously published examining this vaccine 
comparison in the CDC Vaccine Safety Datalink (VSD). The VSD has been actively monitoring new 
vaccines using sequential monitoring methods. In February 2006 they launched an active surveillance 
study to monitor evidence for elevated rates of Febrile Seizure amongst new MMRV recipients relative 
to a historical control design.8,9  Specifically, they used the population of children that received MMR 
vaccine with or without varicella from 2000 to 2006 and calculated age, sex, and site adjusted expected 
risk estimates of febrile seizures for the prospective cohort of newly vaccinated children to MMRV. The 
study used a continuous sequential monitoring boundary which assumes that one monitors after every 
MMRV vaccination, but in reality the data available was weekly. They used the Poisson MaxSPRT10 
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sequential monitoring method which used a Poisson likelihood ratio test statistic assuming the expected 
rates of outcomes from the historical controls is known (not estimated) and monitors until a fixed 
number of exposed MMRV recipients (paper did not  report the maximum sample size planned). The 
VSD study detected an elevated rate of febrile seizures after 43,353 MMRV doses were administered 
and estimated an adjusted RR of ~2 (exact RR not reported). They conducted a follow-up study using a 
prospective control (MMR+V recipients) and chart reviewing all outcomes and found an estimated 
adjusted OR of 2.3 and estimated RD of 5 per 10,000 vaccinated.  
 
The results from the VSD study are extremely comparable to our findings using FDA Sentinel data in 
terms of magnitude of risk at the time of signal (OR or RR, RD: VSD  2.3 , 5 per 10,000; GS IPTW 2.86, 5.2 
per 10,000; GS GEE 2.37, 5.3 per 10,000). The GS IPTW method found the elevated risk the quickest 
after 17,376 MMRV doses while the VSD Poisson MaxSPRT found an elevated risk after 43,353 MMRV 
doses and the GS GEE method after 48,233 MMRV doses. These results corroborate the findings of an 
elevated risk of febrile seizures for MMRV recipients compared to MMR+V recipients. Further study 
comparing these three statistical methods and whether the time to detection is shorter for GS IPTW in 
general should be evaluated. 
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VI. STATISTICAL APPENDIX 

A. GS IPTW DETAILS 

Details of the GS IPTW method have been published in detail in a previous Mini-Sentinel methods 
report2, but this section will briefly discuss the statistical assumptions underlying the method and 
provide detail on what specifically is being displayed in the GS IPTW report (Table 2). We will first 
introduce the methods assuming that the analysis is being performed at a single site (pooled (non-
distributed) data setting) and without sequential monitoring of the outcome (Last Table of Appendix 
Site-Specific Results). Then in Section VI.A.2,  we will introduce the stratified IPTW that properly 
incorporates the distributed data structure. Finally in Section VI.A.3 we will propose how to extend both 
standard and stratified IPTW methods for group sequential monitoring. 

1. IPTW Risk Difference Estimation: Single Site Setting 

Assume at a single site, s, we have outcome Ysi (i=1,..,Ns) equal to 1 if subject i at site s experiences the 
outcome of interest and 0 otherwise, with exposure Xsi(t) equal to 1 if subject i at site s is exposed to the 
medical product of interest and equal to 0 otherwise, and let Zsi be a set of measured baseline 
confounders. Then define the propensity score, esi, as the probability of receiving (ie. being exposed to) 
the medical product Xsi given confounders Zsi, so that esi si si si 

here βx,z is estimated using the 
lds ê = (1+ exp(−β̂ 1

, ))−x z Z si . Th
hts to upweight individuals who 
receive the treatment, while dow

=P(X |Z ). We estimate e using a standard 
logistic regression model, logit(E(Xsi|Zsi))= βx,zZsi, w maximum likelihood 
approach. This is typically done in practice and yie ese propensity 
scores will be used as the inverse probability weig were estimated to be 
unlikely to receive the treatment, but actually did nweighting 
individuals who were estimated to be likely to receive the treatment and did receive the treatment. 
Similarly among those that did not actually receive the treatment, the inverse probability weights will 
upweight those estimated to be likely to receive the treatment and downweight those estimated to be 
not likely to receive the treatment. This evens out the baseline covariate distribution, across exposed 
and unexposed populations, to allow one to estimate an unconfounded population average effect 
estimate. 
 
There are numerous approaches available to estimate the risk difference using IPTW and propensity 
scores 3. For this report we have chosen one weighting approach for which details are given below. We 
initially included a doubly robust estimate, but this was found to be infeasible for the rare event setting 
(even when the probability of outcome was as high as 5%) since doubly robust estimates require 
modeling the probability of outcome conditional on confounders within the exposed group and 
separately modeling the same quantity within the unexposed group. Specifically, because of the small 
number of events, at least one of the models often failed to be estimable. Therefore we used a standard 
approach originally proposed by Rosenbaum et al4 which takes the following form, 


1N X ∑

N
ˆ 

s X
−

∑

−1

∑
N Y  N


s 1−

s X 
 ∑

s
si (1− X )

∆ = si si − si si Ysi
s = µ̂ − µ̂ .  ˆ   

 i=1 esi  i=1 êse  i=1 1− êsi  i=1 1− ê s1 s0
se

The estimated variance of ∆̂s is derived using the empirical sandwich method3 taking into account that 
the esi are estimated. The formula for the variance is given by, 
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Ĥ ∑
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esi are not estimated, such as in the case of known sample weights, then the variance of ∆̂ s can be 
ted as, 

2
~ 1 ∑

Ns  X Y
∆ = 

si ( si − µ̂V( ˆ ) s1) (1− X )(Y − ˆ 0 )
s − si si µs

N 2
, 

s i=1  esi 1− esi 
 is larger than V̂(∆̂ ) ~

s . This variance, V(∆̂ s ) , will be used later when describing a permutation 
ach for the distribution of the standardized test statistic under the null. 

where

and 

 

If the 
estima

 

which
appro
 
It should be noted that bootstrapping is the most standard approach for obtaining IPTW variance 
estimators. However, we chose this empirical estimator approach because it is simpler and 
computationally faster to use making it more practical to implement, especially in the context of a 
distributed data setting. 
 
The single site approach detailed here is used for the site-specific risk difference estimates presented in 
the last appendix table showing results by individual site. The next section will extend this result to a 
stratified IPTW method which allows for an overall, population-level estimate which combines each of 
the site specific estimates. 

2. Stratified IPTW Risk Difference: Multi-Site Estimate 

A variety of approaches exist for combining data across sites. The most straightforward approach, which 
is used in this report, is to use stratified modeling and treat each site’s estimate as independent. 
Specifically, for the risk difference with site-specific estimate, ∆̂ s , a valid overall population estimate, ∆̂
, is 

∑ws∆̂ s

∆̂ = s=1
S , 

∑ws
s=1

imated variance 

S

 

with est

∑
S

w2V̂(∆̂s s )
 V̂(∆̂) = s=1 , 

 
2

∑
S

ws 
 s=1 
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where ws can be the sample size of the site, Ns, or the inverse of the variance of the estimator from tha
site, V̂(∆̂ s ) . However, due to potential instability of the site-specific variance estimates in the rare 
event setting, we found that weighting with the sample size performed much better, and we therefore
use this approach in this report. 
 
Another quantity of interest that is obtainable from this approach is an adjusted probability of outcom
per exposure group (adjusted risk). Specifically, the site specific RD= ∆̂ s = µ̂ s1 − µ̂ s0 , which is the 
average estimated probability of observing the outcome given X=1 minus the average estimated 
probability of observing the outcome given X=0. Therefore we can then calculate a site stratified 
estimated adjusted risk as the following, 

∑
S

ws µ̂ sX

µ̂ = s=1
X

∑
S . 

ws
s=1

t 

 

e 

 
We use this quantity in the report when presenting adjusted risk by exposure group. The next section 
will extend these approaches for use in group sequential monitoring.  

3. Group Sequential IPTW (GS IPTW) 

Now that we are in the context of group sequential monitoring we must introduce the concept of 
multiple analysis times. Specifically, we assume that accruing data will be analyzed at specific time 
points (t=1,…,T). We also assume that an individual i at site s is either exposed to the medical product of 
interest, Xsi(t)=1, or not, Xsi(t)=0 and either has the outcome of interest, Ysi(t)=1, or does not ,Ysi(t)=0, 
before analysis time t. Note that since we are assessing acute outcome events with short follow-up 
windows it is standard to only include participants in the study population after their short follow-up 
window (e.g. 45 days) has elapsed so that all participants have the same follow-up time. Additional 
common data lag time issues have been discussed elsewhere and will be not discussed in this report.11,12 
We assume all within site baseline confounders, Zsi, are measured and are not dependent on time. 
Further, we assume that the cumulative nu
Ns(t) yielding the cumulative total number 

∑S

s=1
N s (t) . 

 
The same null hypothesis is tested at each 

mber of participants observed at site s up to analysis time t is 
of observed people across sites at analysis time t is N(t)=

analysis time t, HO: ∆(t)=0, and if the test statistic at analysis t 
exceeds a pre-defined critical boundary, c(t), it signals a significantly elevated rate of events in the 
exposed group at analysis t; otherwise, the study continues to the next analysis time until the pre-
defined end of the evaluation, N(T). At each analysis, new information accumulates, which includes new 
participants since the last analysis. Different approaches for incorporating updated data yield different 
assumptions that need to be accounted for in the calculation of the critical boundary. The critical 
boundary can be chosen in numerous ways, but it must maintain the overall type I error rate across all 
analyses, taking into account both multiple testing and the skewed distribution of the test statistic that 
results when one conditions on whether or not earlier test statistics exceeded the specified critical 
value. To form a boundary it is necessary to define a test statistic, the variability of the test statistic over 
time, the shape of the boundary, the number of analysis times and when they will occur, the α-level 
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(type I error) and either the maximum sample size at end of study or overall power. To begin, we first 
assume that the maximum sample size and number of observations per analysis time are known and 
allow power to vary. We used a general unifying boundary definition developed by Kittleson and 
Emerson.5 This approach defines the boundary as a general function of time c(t)=au(t) where u(t) is a 
function dependent on the proportion of statistical information (e.g., sample size) up to time t and is of 
the form u(t)=(N(T)/N(t))1-2ω, where ω>0 is a fixed parameter depending upon the desired design (e.g. 
u(t)=1 is Pocock-like6 and u(t)=(N(T)/N(t))0.5 is O'Brien and Fleming7). One solves for the constant a using 
an iterative simulation approach to hold the overall type I error at α.  
 
For our application in the rare event setting we have chosen a non-parametric permutation approach to 
solve for a, which has the advantage of relaxing standard parametric assumptions. If the null hypothesis, 
HO: ∆(t)=0, is true, this implies that within each site Xsi is independent of Ysi conditional on confounders 
Zsi. Therefore, to derive a permutation test under the null one can simply permute all X’s while fixing the 
outcome and confounder data as observed, ((Ys,1, Zs,1),…, (Ys,Ns(t), Zs,Ns(t))), resulting in a pe

ates the pth of the Nperm permutations. However, since 
opensity score for the permuted dataset is constant P(Xp

s

r all p. Once we fix the propensity scores to be constant, 
te of the variance of the estimator for the permuted dat
ate is not V̂(∆̂ s ) , but V~(∆̂ s ) . Keeping propensity scor

ncy since the propensity score does not need to be esti
y we observe variability in the proportion exposed over ti
 the test statistic and therefore we have implemented th

n analysis time. To do this, we assume that the data are o

rmutation, 
(Xp

s,(1),…, Xp
s,(Ns(t))), where p indic we are 

randomly permuting X’s, the pr i|Zsi)= P(Xp
si), 

since Xp
s is independent of Z, fo we must 

incorporate this into the estima a. Specifically, 
for the permuted data the estim es constant 
allows for computational efficie mated for all 
permutations. Further, in realit me, which 
directly affects the variability of e permutation 
test by permuting within a give rdered by time 
of entry into study such that, for analysis at time t, the new data observed at analysis time t since t-1  for 
site s is indexed by {Ns(t-1)+ 1} to {Ns(t)}, and for the first analysis time has index {1} to {Ns(t)}. Given this 
ordering of the data the permutation approach proceeds as follows: 
 

Step 1: Within each analysis t for each site s, simulate data by fixing observed outcomes (Ys,Ns(t-

1)+1),…,(Ys,Ns(t)) and permuting X s,Ns(t-1)+1,…,X p p
 s,Ns(t) to create X  s,Ns(t-1)+1,…,X  s,Ns(t) to obtain Nperm 

permuted datasets (p=1,…,Nperm). 
 2: For each permuted dataset p at each analysis time t and each site s calculate the site specific 

∆̂ (t) V~adjusted RD, s , and variance, (∆̂ s (t))  from permuted data up to time t (Ys,1(t), 
Xp

s,1),…,(Y p
Ns(t)(t), X Ns(t)) and fixing the propensity scores 

e = ∑N s (t )
si − −

i=N (t−1)+1
X si /(Ns (t) Ns (t 1)) .  

s

 3: For each permutation dataset p at each analysis time t calculate the stratified IPTW estimate, 

∆̂(t) ~
, and variance, V(∆̂(t))  yielding the standardized IPTW test statistic, Z p (t) . 

Z p (t)
 4: For each permuted dataset calculate C p

max = sup  which is the maximum value of the 
t u(t)

standardized test statistic across time for that permutation taking into account the desired 
shape of the boundary. 

 5: Estimate, a, as â = C (1−α )
max which is the (1-α) percentile of C p

max . 
 6: Boundary at time t is c(t)= â u(t). 

Step

Step

Step

Step
Step
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This simulation framework requires that we have a complete dataset (Yxi(t), Zsi, Xsi(t)) for all sites and all 
observation times. However, this is not practical at earlier analysis times t < T. To solve this, at times t < 
T we can instead make assumptions about how the data will look at future analysis times. Specifically, to 
derive the permutation approach under the null we only need to know the prevalence of Xsi and Ysi at 
future looks since P(Xs|Zs)=P(Xs) under the null and the total sample size is N(T). Therefore, to 
approximate the future prevalence of Xs and Ys, we can sample the future observations, N(T)-N(t), by 
sampling with replacement from the observed (Xsi, Ysi). At each site we sample (N(T)- N(t))xNs(t)/N(t) 
future observations within site s assuming that the proportion of future observations that site s 
contributes is similar to the proportion it contributes currently (e.g. Ns(t) / N(t)= Ns(T) / N(T)). This will 
create a complete dataset necessary to perform the permutation approach previously described for all 
analyses. 
 
In practice, at each new analysis time we keep the prior boundary values, c(1),…,c(t-1) since these were 
the signaling thresholds used at previous analysis times and each analysis time is defined to be 
conditional on the prior analyses. The simulation plan is slightly altered to take into account the amount 
of error spent at previous analysis times and incorporating not having all observed data across all 
analysis times. Specifically we follow the following simulation outline: 
 

Step 1: If at analysis time t<T: Create one complete dataset by sampling with replacement (N(T)- 
N(t))xNs(t)/N(t) observations from (Ysi(t),Xsi(t)) (i = 1,…, Ns(t)) at each site s.  

Given a complete observed dataset: 
Step 2: Within each analysis t for each site s, simulate data by fixing observed outcomes (Ys,Ns(t-

1)+1),…,(Ys,Ns(t)) and permuting X s,Ns(t-1)+1,…,X s,Ns(t) to create Xp
 s,Ns(t-1)+1,…,Xp

 s,Ns(t) to obtain Nperm 
permuted datasets (p=1,…,Nperm). 

Step 3: For each permuted dataset p at each analysis time t at each site s calculate the site specific 
adjusted RD, ∆̂ s (t) , and variance, V~(∆̂ s (t))  from permuted data up to time t (Ys,1(t), 
Xp p

s,1),…,(YNs(t)(t), X Ns(t)) and fixing the propensity scores 

e = ∑N s (t )
si − −

i=
 

N
X si /(Ns (t) Ns (t 1)) . 

s (t−1)+1

Step 4: For each permutation dataset p at each analysis time t calculate the stratified IPTW estimate, 

∆̂(t) ~
, and variance, V(∆̂(t))  yielding the standardized IPTW test statistic, Z p (t) . 

Step 5: For analysis times (j<t) already observed and have previous boundaries c(1),…,c(j):  
Calculate the cumulative error spent at analysis time j as:  

Np

∑
erm

I (Z p (1) ≥ c(1) Z p ( j) ≥ c( j))
α̂ ( j) = p=1   

Nperm
and for permutation datasets which cross the previous boundaries set the current analysis 

time standardized IPTW test statistic, Z p (t) , to be something large such as 10,000. Do this 
to make sure that permutation will be treated as signaling in the next step.  

Z p (t)
Step 6: For each permuted dataset calculate C p

max = sup which is the maximum value of the 
t u(t)

standardized IPTW test statistic across time for that permutation taking into account the 
desired shape of the boundary. 
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Step 7: Estimate the current analysis time, a, as â = C (1−α )
t max which is the (1-α) percentile of C p

max . 

 Boundary at time t is c(t)= ât u(t), which takes into account previous boundaries and error 
spent. 

how the boundaries are calculated for the current Sentinel application.  

ntial p-values 

he sequential monitoring boundaries it is important to further quantify the level of statistical 
nificance either at the time of signal or at the end of study surveillance. To calculate such a p-
ue one must make certain decisions about how to order a series of test statistics over time. In 
ne time analysis it is straightforward to order a given test statistic, S, by whether the data 
lization k is greater than data realization m if the test statistic Sk > Sm. However, there are 

merous approaches to choose the ordering of data in sequential monitoring. In our context we 
ly need to order the permuted data realizations compared to observed data realizations at the 
e of signal (observed Z(t)>c(t)) or end of analysis time T. We defined a permuted data 
lization to be more extreme than the observed data realization if one of the following 
ditions occurred: 

ted data realization signaled at previous analysis times: Z p (1) ≥ c(1) Z p (t) ≥ c(t)  or 
ted data realization did not signal at previous analysis times, but the permuted current 
alysis time realization is greater than the observed standardized test statistic, 

tistic. Note that the empirical sequential p-value at the time of signal will always be less than 
 cumulative error spent up to that analysis time, α̂ (t) . 

s of GS IPTW Report Quantities 

l now go over each column of the results table, Table 2 (next page), of the GS IPTW report for 
a signal for analysis 4 comparing MMR+V(X=0) to MMRV( X=1). The first two columns specify 
 look number and date of look. The 3rd column specifies cumulative number of those exposed 

MMR+V at each look. The 4th column provides the cumulative number of outcomes and 
rcent of the MMR+V with outcome (Number of Outcomes/Number of Exposures *100). The 5th 
d 6th column reports columns 3 and 4 for MMRV. The 7th (MMR+V Adj %Out) and 8th (MMRV 

Step 8:

 
This is 

a. Seque

Given t
sig
val
a o
rea
nu
on
tim
rea
con

Permu
Permu

an
Z p (t) ≥ Z (t) | {Z p (1) < c(1) Z p (t −1) < c(t −1)}    

Then the empirical sequential p-value is  
Np

∑
erm

I(Z p (1) ≥ c(1) Z p (t −1) ≥ c(t −1))+ I(Z p (t) ≥ Z (t) | Z p (1) < c(1) Z p (t −1) < c(t −1))
P = p=1

Nperm
Np

∑
erm

I(Z p (t) ≥ Z (t) | Z p (1) < c(1) Z p (t −1) < c(t −1))
= α̂ (t −1) + p=1

Nperm
 

which is the cumulative error spent up to analysis time t combined with the probability of the non-
signaling permuted datasets observing a more extreme value than the current observed test 
sta
the

b. Detail

We wil
at 
the
to 
pe
an
Adj %Out) columns provide the site stratified adjusted risk estimates within exposure group using 
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µ̂ and µ̂  as described in Section VI.A.2. The 9th
0 1  column (Adj RD) is ∆̂ = µ̂1 − µ̂0 . The 10th 

column (IPTW Test) is the standardized IPTW test statistic, Z(t), as specified in Section VI.A.2. The
11th column (Boundary) is the sequential boundary derived using the methods detailed in this 
appendix, c(t). The 12th column (Error Spent) is the cumulative error spent up to a given analysis 
time α̂ (t) . Note that additional error may not necessarily be spent at each analysis time since 
the test is based on a standardized test statistic boundary and not an error spending function. 
This may be advantageous since at earlier analysis times to follow an error spending rule may 
make the boundary on the test statistic smaller than desired. For example, we are attempting to 

 

have a flat boundary on the standardized IPTW test statistic scale so even though no error under 
the NULL was spent at analysis one we still could have signaled under the alternative hypothesis. 
If we had forced an error spending function the first boundary value would have been even 
smaller. However, later in the analysis with more data it would have made it more difficult to 
signal which is counterintuitive to gaining more statistical information. Even when attempting to 
have a flat boundary we still had fluctuations due to the nature of not being able to know the 
outcome, exposure, and confounder distributions at future looks. If they had stayed similar to 
look 1 then the boundary would have stayed close to the original 1.297, but since they did 
change drastically we properly took into account the actual observed distributions and 
appropriately updated the boundary to hold the overall type I error of 0.05. The final column 
(Signal) is just a Yes/No indicator if the IPTW Test Statistic crossed the boundary at a given look. 

 
Since this analysis signaled we also report at the bottom of the table the Sequential P-Value at Signal 

of 0.0319. Note that it is smaller than the error spent at look 4 of 0.031. This is the sequential p-
value as outlined in the previous section. 

 

B. GS GEE METHOD DETAILS 

Details of the GS GEE method have been published in detail in a previous methods task order report1,13, 
but this section will briefly discuss the statistical assumptions underlying the method and provide detail 
on what specifically is being displayed in the GS GEE report (Table 2). We will start with data notation, 
detail the method and how the boundary is calculated, and finish with summarizing specifically each 
column of Table 2.  

1. Data Specification and Notation 

We assume that accruing data on new users of medical product of interest (MPI) or comparator is 
analyzed at specified times (t=1,…,T). We also assume that each individual i (i = 1,…,N(t)) is either 
exposed to the MPI, Xi=1, or not exposed, Xi=0, and either has the outcome of interest occurring before 
the end of analysis t, Yi(t)=1, or does not Yi(t)=0. The exposure time, Ei(t), denotes the cumulative 
exposure time prior to analysis t. It could be a single time exposure window (e.g., vaccine: Ei(t)=1 for all 
individuals) or a chronic exposure (time on either MPI or comparator), for which assumptions of the 
exposure time and outcome relationship must be made (constant risk or change in risk due to exposure 
duration). What is currently applied in Sentinel is that we censor participant’s exposure time at the date 
of disenrollment, occurrence of outcome, or discontinuation of use of the initial assigned treatment 
(allowing for a lag in follow-up specified by user). Further, participants are censored if they switch 
exposure groups and begin taking the other medical product (i.e. an exposed individual starts taking the 
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comparator medical product). These assumptions are consistent with incident user cohort studies which 

s, Zi, associated with individual i, which can 
nditions. When using aggregate data these 
l confounders, Z c

i . For example a 
5 or 10 year age groups. When one further 
e indicators for look time and therefore 
(Note that compared to GS IPTW Z includes 

are currently being used in post-marketing surveillance14. 
 
Further, we assume that there is a set of baseline confounder
be comprised of variables such as site, age, sex, and health co
confounders are often categorized to form a set of categorica
continuous confounder, such as age, can be categorized into 
would like to adjust for time we have allowed Z to also includ
across analyses times Z will differ in number of confounders. 
site as one of the baseline confounders instead of conducting a site-stratified estimate) 
 

2. Group Sequential Generalized Estimating Equations (GS GEE) 

In this section describe the GS GEE method. We first define the relevant generalized estimating 
equations and score statistic used by our approach. We then introduce how we have implemented the 
sequential boundary calculations and corresponding sequential p-value. Finally we end with a detailed 
description of all values reported in the main GS GEE summary report Table 2. 

a. Generalized Estimating Equations 

Assume the marginal expectation of Yi(t) given covariates, Zi, exposure of interest, Xi, and exposure time 
Ei(t) , is E(Yi(t)|Xi, Zi, Ei(t))=µi(t), where µi(t) is linked to Xi, Zi, and Ei(t) through a link function g(.), such 
that 

g(µ i (t)) = β0 + β X X i + β Z Z i + fθ (Ei (t)) , 
where βX is the effect parameter for exposed versus comparator, and βz is a px1 vector of unknown 
regression parameters. Typically g(.) is logit for a binary outcome or logarithm for a Poisson outcome. 
The corresponding marginal variance, dependent on µi(t), is Var(Yi(t)|Xi,Zi,Ei(t)), which is typically µi(t)(1- 
µi(t)) for binary outcomes and µi(t) for Poisson outcomes. The exposure link function, fθ (.) , would 
typically be ignored for a single time exposure or specified as the logarithmic function if using a Poisson 
model. However, to allow for flexibility this has been kept general. 
 
Define the following score equations for analysis time t for βX and βz based on the first moment of Yi(t) 
as, 

) n
U  t

β (t ) (β X  ∑ U i,βX (t ) (β ) ∑nt ∂g(µ (t)) / ∂β 
( ) X  = −  U β =  i 1 X

= i−1 i X 
β (t ) . U (β )  ∑n

  t   
( Z U   nt

βZ t ) 
 i−1 i,βZ (t ) (β Z ) ∂ ∂ ∑i−

g(µ
1 i (t)) / β Z 

 
Using Uβ (t ) (β)  we denote S(t) as the standard generalized score statistic using a robust sandwich 
variance estimator15 for testing if Ho: βX=0. By using a generalized score statistic we are only assuming 
that the mean model is correctly specified.16  In the next section we will use this score test statistic S(t) 
at analysis time t, to develop sequential monitoring boundaries. 
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b. Observational Group Sequential Monitoring Boundary 

The general purpose of group sequential boundaries is to be able to conduct multiple testing of a null 
hypothesis of interest while incorporating a stopping boundary. Both sufficient power and short time-to-
detection of a potential signal, if it exists, is desired while still holding the overall type I error. For the 
method currently applied in Sentinel, the interest is in a one-sided alternative hypothesis of βX > 0; 
however, it is easy to incorporate two-sided hypotheses or futility boundaries commonly used in clinic

n we modified a well established simulation approach using the 
 approach allows for the application of a wide range of commonly 
e Pocock-like boundary, which is at on the standardized test statisti

 boundary, which is proportional to n on the standardized test 
ndary is defined as c(t) = au(t) where u(t) is a function dependent o
ation (e.g. sample size) up to time t and is of the form u(t)= 

 a fixed parameter depending upon design (specifically for Pocock-li

t)= N (t) / N (T ) ) and a is solved iteratively by permuting the dat
t α. 

 to define a test statistic, the variability of the test statistic over tim

al 
trials. For our boundary formulatio
unifying family of boundaries5. This
used boundary shapes including th c 

scale6 and the O'Brien and Fleming
statistic scale7. Specifically, the bou n 
the proportion of statistical inform
(N (t) / N (T ))1−2ω where ω > 0  is ke 

u(t) = 1 and O'Brien and Fleming u( a 
under H0 to hold the type 1 error a
 
To form a boundary it is necessary e, 
the shape of the boundary, the number of analysis times and when they occur, the α-level (type I error) 
and either maximum sample size at end of study or overall power. We first assume that the maximum 
sample size and number of observations per analysis time is known and allow power to vary. For 
observational studies to determine the variability of the test statistic over time one must also assume 
the distribution at each analysis time of all variables in the model including outcome, exposure and all 
confounder distributions. We then discuss how to alter this boundary selection process to incorporate 
earlier non-pre-specified analysis times, variable number of observations N(t) per analysis time and 
unknown future data distributions (exposed, outcome, and confounder distributions). 
 
To accommodate rare events, we have chosen a non-parametric permutation approach to solve for a, 
which has the advantage of relaxing standard parametric assumptions. Under the null hypothesis βX(t) = 
0 for all t since Yi(t)|Zi,Ei(t) is independent of Xi. Therefore, we can permute observed exposures, X, while 
fixing the observed set (Y(t),Z,E(t)). Since we are analyzing data at times t = 1,…,T, and in practice the 
variability in the proportion exposed may directly affect the variability of the test statistic, it is important 
to permute X within analysis time t. To do this, we assume that the data are ordered by time of entry 
into study such that, for analysis at time t, the new data observed at analysis time t since t-1 is indexed 
by {N(t-1)+ 1} to {N(t)} and for the first analysis time has index {1} to {N(1)}. Given this ordering of the 
data the permutation approach proceeds as follows: 
 

Step 1: Within each analysis t, simulate data by fixing (YN(t-1)+1, ZN(t-1)+1, EN(t-1)+1),…,(YN(t), ZN(t), EN(t)) and 
permuting XN(t-1)+1,…,XN(t) to create Xp

N(t-1)+1,…,Xp
N(t) to obtain Nperm permuted datasets 

(p=1,…,Nperm). 
Step 2: For each permuted dataset p at each analysis time t calculate the score test statistic Sp(t) from 

permuted data up to time t (Y1(t), Z1, E1(t), Xp
1),…,(YN(t)(t), ZN(t), EN(t)(t), Xp

N(t)).  
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Step 3: For each
S p (t)

 permuted dataset calculate C p
max = sup  , which is the maximum value 

t u(t)
atistic across time for that permutation taking into account the desired shape 
ry. 
, a, as â = C (1−α )

max which is the (1-α) percentile of C p
max . 

oundary at time t is c(t)= â u(t). 

mework requires that we have a complete dataset (Yi(t), Zi, Ei(t),Xi) for all obser
owever, this is not practical at earlier analysis times t < T. To solve this, at time

ke assumptions about how the data will look at future analysis times. Specifical

of the 

score st of the 
bounda

Step 4: Estimate
Step 5: Critical b

 
This simulation fra vation 
times i=1,...,N(T). H s t < T 
we can instead ma ly, we 
will assume that future data will look like the current outcome, exposure, and confounder data. To 
approximate the future distributions of Y, X, E, and Z, we can sample the future observations, N(t)+1 to 
N(T), by sampling with replacement from the observed (Yi(t),Xi,Zi,Ei(t)) (i = 1,…,N(t)). This will create a 
complete dataset necessary to perform the permutation approach described previously for all analysis 
times.  
 
In practice, at each new analysis time we keep the prior boundary values, c(1),…,c(t-1) since these were 
the signaling thresholds used at previous analysis times and each analysis time is defined to be 
conditional on the prior analyses. The simulation plan is slightly altered to take into account the amount 
of error spent at previous analysis times and incorporating not having all observed data across all 
analysis times. Specifically we follow the following simulation outline: 
 

Step 1: If at analysis time t<T: Create one complete dataset by sampling with replacement N(T) – N(t) 
observations from (Yi(t),Xi,Zi,Ei(t)) (i = 1,…,N(t)).  

Given a complete observed dataset: 
Step 2: Within each analysis t, simulate data by fixing (YN(t-1)+1, ZN(t-1)+1, EN(t-1)+1),…,(YN(t), ZN(t), EN(t)) and 

permuting XN(t-1)+1,…,XN(t) to create Xp
N(t-1)+1,…,Xp

N(t) to obtain Nperm permuted datasets 
(p=1,…,Nperm). 

Step 3: For each permuted dataset p at each analysis time t calculate the score test statistic Sp(t) from 
permuted data up to time t (Y1(t), Z1, E1(t), Xp

1),…,(YN(t)(t), ZN(t), EN(t)(t), Xp
N(t)).  

Step 4: For analysis times ( ) already observed and have previous boundaries (1),…, ( ):  
Calculate the cumulative error spent at analysis time j as:  

Np

∑
erm

I (S p (1) ≥ c(1) S p ( j) ≥ c( j))
α̂ ( j) = p=1   

Nperm
and for permutations datasets in which cross the previous boundaries set the current 
analysis time score statistic, Sp(t) , to be something large such as 10,000. Do this to make sure 
that permutation will be treated as signaling in the next step.  

S p (t)
6: For each permuted dataset calculate C p

max = sup  which is the maximum value of the 
t u(t)

score statistic across time for that permutation taking into account the desired shape of the 
boundary. 

4: Estimate the current analysis time, a, as â = C (1−α )
t max which is the (1-α) percentile of C p

max . 
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Step 5: Critical boundary at time t is c(t)= ât u(t), which takes into account previous boundaries and 
error spent. 

These are how the boundaries are calculated for the current Sentinel application.  

 

c. Sequential p-values 

Given the sequential monitoring boundaries it is important to further quantify the level of statistical 
significance either at the time of signal or at the end of study surveillance. To calculate such a p-
value one must make certain decisions about how to order a series of test statistics over time. At 
a one-time analysis it is straightforward to order a given test statistic, S, by the data realization k 
is greater than data realization m if the test statistic Sk > Sm. However, there are numerous 
approaches to choose the ordering of data in sequential monitoring. In our context we only need 
to order the permuted data realizations compared to observed data realizations at the time of 
signal (observed S(t)>b(t)) or end of analysis time T. We defined a permuted data realization to 
be more extreme than the observed data realization if one of the following conditions occurred: 

Permuted data realization signaled at previous analysis times: S p (1) ≥ c(1) S p (t) ≥ c(t)  or 
Permuted data realization did not signal at previous analysis times, but the permuted current 

analysis time score statistic, Sp(t), is greater than the observed score statistic, 
S p (t) ≥ S(t) | {S p (1) < c(1) S p (t −1) < c(t −1)}    

Then the empirical sequential p-value is  
Np

∑
erm

I(S p (1) ≥ c(1) S p (t −1) ≥ c(t −1))+ I(S p (t) ≥ S(t) | S p (1) < c(1) S p (t −1) < c(t −
P = p=1

Nperm
Np

∑
erm

I(S p (t) ≥ S(t) | S p (1) < c(1) S p (t −1) < c(t −1))
= α̂ (t −1) + p=1

Nperm
 

which is the cumulative error spent up to analysis time t combined with the probability of the non-
signaling permuted datasets observing a more extreme value than the current observed test 
statistic. Denote the empirical sequential p-value at the time of signal will always be less than the 
cumulative error spent up to that analysis time, α̂ (t) . 

d. Details of GS GEE Report Quantities 

We will now go over each column of the results table, Table 2 (next table), of the GS GEE report for at 
a signal for analysis 8 comparing MMR+V(X=0) to MMRV(X=1). The first two columns specify the 
look number and date of look. The 3rd column specifies cumulative number of those exposed to 
MMR+V at each look. The 4th column provides the cumulative number of outcomes and percent 
of the MMR+V with outcome (Number of Outcomes/Number of Exposures *100). The 5th and 6th 
column reports columns 3 and 4 for MMRV. The 7th (MMR+V Adj %Out) and 8th (MMRV Adj 

))1

%Out) columns provide an adjusted for confounding measure of percent of each exposure group 
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with outcome. Specifically, first run the following standard logistic regression mo
time t, 
logit(E(Yi )) = β0 + β X Di + β Z Z i   for i=1,…,N(t) 

and estimate all of the regression parameters. Then for each observation calculate th
probability of outcome if they were on MMR+V,  

exp(β̂ β̂ Z )
µ̂ ( = 0) 0 + Z i

i X =
1+ exp(β̂ ˆ

0 + β Z Z i )  ,  
and average these estimated probabilities to obtain MMR+V adjusted percent outco

µ100∑
nt ˆ i (X = 0)

 . Similar calculation is done for MMRV adjusted percent outco
i=1 nt

µ̂ i (X = 0) with, 

exp(β̂ + β̂ + β̂ Z
µ̂ (X = 1) = 0 X Z i )

i 1+ exp(β̂ ˆ
0 + β X + β̂ Z Z i ) . 

The 9th column (Adj OR) is from the same model as the adjusted percent outcome an

exp(β̂ ) . The 10th
X  column (Score Test) is the generalized score test statistic, S(t),

this appendix. The 11th column (Boundary) is the sequential boundary derived usi
detailed in this appendix, Section VI.B.2, c(t). The 12th column (Error Spent) is the 
error spent up to a given analysis time α̂ (t) . Note that additional error may not 
spent at each analysis time since the test is based on a standardized test statistic 
not an error spending function. This may be advantageous since at earlier analysi
follow an error spending rule may make the boundary on the test statistic smaller
For example, we are attempting to have a flat boundary on the score test statistic
though no error under the NULL was spent at analysis one we still could have sign
alternative hypothesis. If we had forced an error spending function the first boun
would have been even smaller. However, later in the analysis with more data it w
it more difficult to signal which is counterintuitive to gaining more statistical infor
when attempting to have a flat boundary we still had fluctuations due to the natu
able to know the outcome, exposure, and confounder distributions at future look
stayed being similar to look 1 then the boundary would have stayed close to the 
but since they did change drastically we properly took into account the actual obs

del at analysis 

e estimated 

me,  

me, but replace 

d is the 

 as specified in 
ng the methods 
cumulative 

necessarily be 
boundary and 
s times to 
 then desired. 
 scale so even 
aled under the 
dary value 
ould have made 
mation. Even 
re of not being 
s. If they had 

original 3.407, 
erved 

distributions and appropriately updated the boundary to hold the overall type I error of 0.05. The 
final column (Signal) is just a Yes/No indicator if the Score Test Statistic crossed the boundary at a 
given look. 

Since this analysis signaled we also report at the bottom of the table the Sequential P-Value at Signal 
of 0.03. Note that it is smaller than the error spent at look 8 of 0.038. This is the sequential p-
value as outlined in the previous section. 
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